Skip to main content
Advanced Search

Filters: Date Range: {"choice":"month"} (X) > Categories: Project (X) > Extensions: Expando (X)

35 results (11ms)   

Filters
Date Types (for Date Range)
Extensions
Types
Contacts
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Cheatgrass began invading the Great Basin about 100 years ago, changing large parts of the landscape from a rich, diverse ecosystem to one where a single invasive species dominates. Cheatgrass dominated areas experience more fires that burn more land than in native ecosystems, resulting in economic and resource losses. Therefore, the reduced production, or absence, of cheatgrass in previously invaded areas during years of adequate precipitation could be seen as a windfall. However, this cheatgrass dieoff phenomenon creates other problems for land managers like accelerated soil erosion, loss of early spring food supply for livestock and wildlife, and unknown recovery pathways. We used satellite data and scientific...
thumbnail
The distribution and abundance of cheatgrass, an invasive annual grass native to Eurasia, has increased substantially across the Intermountain West, including the Great Basin. Cheatgrass is highly flammable, and as it has expanded, the extent and frequency of fire in the Great Basin has increased by as much as 200%. These changes in fire regimes are associated with loss of the native sagebrush, grasses, and herbaceous flowering plants that provide habitat for many native animals, including Greater Sage-Grouse. Changes in vegetation and fire management have been suggested with the intent of conserving Greater Sage-Grouse. However, the potential responses of other sensitive-status birds to these changes in management...
thumbnail
Ecological systems are already responding to modern changes in climate. Many species are moving in directions and at rates that correspond with recent climatic change. Understanding how species distributions and abundances are likely to be altered can inform management and planning activities resulting in more robust management. We projected climate-driven changes in the abundances and distributions of 31 focal bird species in Oregon and Washington using the latest downscaled CMIP5 climate projections and corresponding vegetation model outputs. We mapped these future projections and integrated them into an existing web-based tool (http://data.pointblue.org/apps/nwcsc/) to allow managers and planners to access and...
thumbnail
The Northwest Climate Conference (formerly called the Pacific Northwest Climate Science Conference) is the premier climate science event for the region, providing a forum for researchers and practitioners to share scientific results and discuss challenges and solutions related to the impacts of climate change on people, natural resources, and infrastructure in the Northwest. Conference participants include policy- and decision-makers, resource managers, and scientists from academia, public agencies, sovereign tribal nations, non-governmental organizations, and the private sector. More information can be found at the conference website: http://pnwclimateconference.org. The Second Annual Pacific Northwest Climate...
thumbnail
Climate change is already affecting species in many ways. Because individual species respond to climate change differently, some will be adversely affected by climate change whereas others may benefit. Successfully managing species in a changing climate will require an understanding of which species will be most and least impacted by climate change. Although several approaches have been proposed for assessing the vulnerability of species to climate change, it is unclear whether these approaches are likely to produce similar results. In this study, we compared the relative vulnerabilities to climate change of 76 species of birds, mammals, amphibians, and trees based on three different approaches to assessing vulnerability....
thumbnail
In the Pacific Northwest, land and resource managers strive to make decisions that benefit both natural and human communities, balancing ecological and economic demands including wildlife habitat, forest products, forage for grazing, clean water, and wildfire control. Climate change adds a layer of complexity to the planning process because of its uncertain effects on the environment. In order to make sound decisions, managers need information about how climate change will affect wildlife habitat, both on its own and in conjunction with management actions. The goal of this project was to explore how future climate may interact with management alternatives to shape wildlife habitat across large landscapes. Scientists...
thumbnail
This project links climate, hydrological, and ecological changes over the next 30 years in a Great Basin watershed. In recent years, climate variability on annual and decadal time scales has been recognized as greater than commonly perceived with increasing impacts on ecosystems and available water resources. Changes in vegetation distribution, composition and productivity resulting from climate change affect plant water use, which in turn can alter stream flow, groundwater and eventually available water resources. To better understand these links, project researchers implemented two computer-based numeric models in the Cleve Creek watershed in the Schell Creek Range, east of Ely, Nevada. The application of the...
Categories: Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2013, CASC, Cleve Creek, Climate, Completed, All tags...
thumbnail
To understand potential climate change impacts on ecosystems, water resources, and numerous other natural and managed resources, climate change data and projections must be downscaled from coarse global climate models to much finer resolutions and more applicable formats. This project conducted comparative analyses to better understand the accuracy and properties of these downscaled climate simulations and climate-change projections. Interpretation, guidance and evaluation, including measures of uncertainties, strengths and weaknesses of the different methodologies for each simulation, can enable potential users with the necessary information to select and apply the models.
thumbnail
The goal of this project was to: (a) archive the relevant AR5 model output data for the southwest region; (b) downscale daily temperature and precipitation to 12 X 12 km cell spatial resolution over the Southwest; (c) assess the precision (degree of agreement) of the simulated models; (d) assess the direction and magnitude of change in projections between AR4 and AR5, as well as assess projections of key extreme climatic events (i.e., extreme drought, extreme seasonal precipitation, extreme high and low temperature events); and (e) assess critical ecosystem impacts (i.e., climate water deficit and fire; hydrological condition of major river systems; impacts on highly valued species).
thumbnail
Wildfires are one of the greatest threats to human infrastructure and the ecosystem services humans value in the western US, but are also necessary in fire-adapted ecosystems. Wildfire activity is widely projected to increase in response to climate change in the Northwest, but we currently lack a comprehensive understanding of what this increase will look like or what its impacts will be on a variety of ecological and hydrologic systems. This project addressed one critical part of those impacts: the islands of unburned vegetation within wildfires. Unburned islands occur naturally as wildfires burn across landscapes, and are important habitat refuges for species -- places where plants and animals survive the fire...
thumbnail
The Schitsu'umsh people (Coeur d’Alene Tribe of Idaho) have an intimate relationship with their landscape and a rich knowledge of how to interact with the environment in a way that benefits human, plant, and animal communities alike. Such knowledge and practices can provide valuable insight as to how tribal and non-tribal resource managers, communities, and governments can best respond to the effects of a changing climate. This project was a pilot effort to collect and translate indigenous knowledge and practices into shareable formats. Researchers developed documents, images, lesson plans, and innovative, interactive 3-D virtual reality simulations that effectively convey Schitsu’umsh knowledge and practices and...
thumbnail
In California, the near-shore area where the ocean meets the land is a highly productive yet sensitive region that supports a wealth of wildlife, including several native bird species. These saltmarshes, mudflats, and shallow bays are not only critical for wildlife, but they also provide economic and recreational benefits to local communities. Today, sea-level rise, more frequent and stronger storms, saltwater intrusion, and warming water temperatures are among the threats that are altering these important habitats. To support future planning and conservation of California’s near-shore habitats, researchers examined current weather patterns, elevations, tides, and sediments at these sites to see how they affect...
Categories: Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2012, Bolinas Lagoon, CA, CASC, California, All tags...
thumbnail
Climate change is one of the most pressing issues facing resource management. The disruptions it is causing require that we change the way we consider management in order to ensure the future of habitats, species, and human communities. Practitioners often struggle with how to identify and prioritize specific climate adaptation actions (CAAs). Management actions may have a higher probability of being successful if they are informed by available scientific knowledge and findings. The goal of the Available Science Assessment Process (ASAP) was to synthesize and evaluate the body of scientific knowledge on specific, on-the-ground CAAs to determine the conditions, timeframes, and geographic areas where particular CAAs...
thumbnail
Fire in the western U.S. poses one of the greatest threats to human and ecological communities alike. In fact, fire management is the largest single expenditure of land management funds on federal lands. Now, climate change is altering wildfire patterns. Climate change in the West is creating warmer and drier conditions, resulting in an increase in the amount of dead vegetation available to fuel fires. This project sought to assess the vulnerability of forests in the southwestern U.S. to climate change and wildfire, in order to understand how these ecosystems might become altered as a result. Researchers (a) examined how climate change impacts wildfires in the region, to better understand fire risk; (b) identified...
thumbnail
The number of fish collected in routine monitoring surveys often varies from year to year, from lake to lake, and from location to location within a lake. Although some variability in fish catches is expected across factors such as location and season, we know less about how large-scale disturbances like climate change will influence population variability. The Laurentian Great Lakes in North America are the largest group of freshwater lakes in the world, and they have experienced major changes due to fluctuations in pollution and nutrient loadings, exploitation of natural resources, introductions of non-native species, and shifting climatic patterns. In this project, we analyzed established long-term data about...
thumbnail
The purpose of this project was to (1) provide an internally-­consistent set of downscaled projections across the western U.S., (2) include information about projection uncertainty, and (3) assess projected changes of hydrologic extremes. These objectives were designed to address decision support needs for climate adaptation and resource management actions. Specifically, understanding of uncertainty in climate projections - in particular for extreme events - is currently a key scientific and management barrier to adaptation planning and vulnerability assessment. The new dataset fills in the Northwest domain to cover a key gap in the previous dataset, adds additional projections (both from other global climate models...
thumbnail
The bull trout, listed as threatened under the Endangered Species Act, is well adapted to the cold waters of the Northwest. Recent changes in climate have caused winter flooding and warmer summer water temperatures in the region, reducing the cold-water habitats that bull trout depend on. The southernmost bull trout populations, found in Oregon, Washington, Idaho, Montana, and Nevada, are currently restricted to small reserves where the coldest waters still exist. These shrinking habitats have created a severed environment being further split by dams, poor water quality, and invasive species. The goal of this project was to determine how these factors threaten the species regionally by using predictions of stream...
thumbnail
The Oregon Water Science Center provided the scientific, bibliographic, and administrative support needed to prepare a Science Agenda for the Northwest Climate Science Center (NW CSC). The Science Agenda is the basis for guiding the science program of the NW CSC.
thumbnail
Greater sage-grouse (Centrocercus urophasianus) is a candidate for listing under the Endangered Species Act because of population and habitat fragmentation combined with inadequate regulatory mechanisms to control development in critical areas. In addition to the current threats to habitat, each 1 degree celsius increase in temperature due to climate change is expected to result in an additional 87,000 km2 of sagebrush (Artemisia spp.) that will be converted to unsuitable habitat for sage-grouse. Thus, the future distribution and composition of sagebrush landscapes is likely to differ greatly from today’s configuration. We conducted a large, multi-objective project to identify: (1) characteristics of habitats required...
thumbnail
The objective of this study was to determine why certain stream insects tend to be found in certain temperature ranges. Many federal, state and local agencies use stream insects to monitor the health of freshwater ecosystems. While the temperature ranges for some insects are often inferred from the temperature of the waters where they were collected, this inference is coarse at best and problematic at worst. Stream temperatures fluctuate a lot during the year and temperature may or may not control where an insect lives. Field insects were collected and sent to a laboratory for testing several temperature endpoints, particularly at higher temperatures. Respiration, breathing rate, and some physical activities were...


map background search result map search result map Climate, Land Management and Future Wildlife Habitat in the Pacific Northwest Understanding Climate Change Vulnerability in the Pacific Northwest: A Comparison of Three Approaches Understanding Future Extreme Water Events in the Pacific Northwest and Related Uncertainties to Inform Assessments of Vulnerability Identification and Laboratory Validation of Temperature Tolerance for Macroinvertebrates: Developing Vulnerability Prediction Tools Rangewide Climate Vulnerability Assessment for Threatened Bull Trout Modeling Effects of Climate Change on Cheatgrass Die-Off Areas in the Northern Great Basin Contribution of Landscape Characteristics and Vegetation Shifts from Global Climate Change to Long-Term Viability of Greater Sage-grouse Understanding the Varying Responses of Fish Populations to Future Climate Analysis of Downscaled Climate Simulations and Projections and Their Use in Decision Making for the Southwest The Vulnerability of Forests to Climate Change and Wildfire in the Southwestern U.S. Development Support for the NW Climate Science Center Science Agenda Support for the Second Annual Pacific Northwest Climate Science Conference Assessment of Available Climate Models and Projections for the Southwest Region Effects of Sea-Level Rise and Extreme Storms on California Coastal Habitats: Part 1 Understanding and Projecting Changes in Climate, Hydrology, and Ecology in the Great Basin for the Next 30 Years Disappearing Refugia: Identifying Trends and Resilience in Unburned Islands under Climate Change Visualizing the Future Abundance and Distribution of Birds in the Northwest Collecting and Applying Schitsu’umsh Indigenous Knowledge and Practices to Climate Change Decision Making Relations Among Cheatgrass, Fire, Climate, and Sensitive-Status Birds across the Great Basin The Available Science Assessment Process (ASAP) Continued: Evaluating Adaptation Actions for Sea-Level Rise and Coastal Change in the Pacific Northwest Understanding and Projecting Changes in Climate, Hydrology, and Ecology in the Great Basin for the Next 30 Years Modeling Effects of Climate Change on Cheatgrass Die-Off Areas in the Northern Great Basin Collecting and Applying Schitsu’umsh Indigenous Knowledge and Practices to Climate Change Decision Making Climate, Land Management and Future Wildlife Habitat in the Pacific Northwest Visualizing the Future Abundance and Distribution of Birds in the Northwest The Available Science Assessment Process (ASAP) Continued: Evaluating Adaptation Actions for Sea-Level Rise and Coastal Change in the Pacific Northwest Effects of Sea-Level Rise and Extreme Storms on California Coastal Habitats: Part 1 Development Support for the NW Climate Science Center Science Agenda Support for the Second Annual Pacific Northwest Climate Science Conference Disappearing Refugia: Identifying Trends and Resilience in Unburned Islands under Climate Change Rangewide Climate Vulnerability Assessment for Threatened Bull Trout Relations Among Cheatgrass, Fire, Climate, and Sensitive-Status Birds across the Great Basin Analysis of Downscaled Climate Simulations and Projections and Their Use in Decision Making for the Southwest The Vulnerability of Forests to Climate Change and Wildfire in the Southwestern U.S. Assessment of Available Climate Models and Projections for the Southwest Region Understanding the Varying Responses of Fish Populations to Future Climate Contribution of Landscape Characteristics and Vegetation Shifts from Global Climate Change to Long-Term Viability of Greater Sage-grouse Identification and Laboratory Validation of Temperature Tolerance for Macroinvertebrates: Developing Vulnerability Prediction Tools Understanding Future Extreme Water Events in the Pacific Northwest and Related Uncertainties to Inform Assessments of Vulnerability Understanding Climate Change Vulnerability in the Pacific Northwest: A Comparison of Three Approaches