Skip to main content
Advanced Search

Filters: System Type: Data Release (X) > Categories: NOT Data Release - In Progress (X) > Tags: {"type":"Science Themes","name":"water, coasts and ice"} (X)

24 results (17ms)   

View Results as: JSON ATOM CSV
thumbnail
This data set includes bi-monthly data on submerged aquatic vegetation species composition, percent cover, above and below ground biomass and environmental data at coastal sites across the fresh to saline gradient in Barataria Bay, LA. This project was co-funded by the South Central Climate Adaptation Science Center and the Gulf Coast Prairie and the Gulf Coastal Plains and Ozarks Landscape Conservation Cooperatives. An alternate reference to this product can be found here.
thumbnail
The U.S. Geological Survey Precipitation-Runoff Modeling System (PRMS) was used to assess the effects of changing climate and land disturbance on seasonal streamflow in the Rio Grande Headwaters (RGHW) region. Three applications of PRMS in the RGHW were used to simulate 1) baseline effects of climate, 2) effects of bark-beetle induced tree mortality, and 3) effects of wildfire, on components of the hydrologic cycle and subsequent seasonal streamflow runoff from April through September for water years 1980 through 2017. PRMS input files and select PRMS output variables for each simulation are contained in this data release to accompany the journal article.
Geographic patterns and time trends of water-quality, modeled streamflow, and ecological data were compared along the Canadian River and selected tributaries in northeastern New Mexico to Lake Eufaula in Oklahoma to determine effects of climate change on water quality, streamflows, fish populations and ecological flows in this watershed from 1939 to 2013. Project participants included staff from the Oklahoma Cooperative Fish and Wildlife Research Unit, Vieux and Associates, USGS New Jersey Water Science Center and the USGS Oklahoma Water Science Center. Principal project funding was by the South Central Climate Science Center, with in-kind matching from the project participant organizations.
thumbnail
This data release includes data-processing scripts, data products, and associated metadata for a study to model the hydrology of several hundred vernal pools (i.e., seasonal pools or ephemeral wetlands) across the northeastern United States. More information on this study is available from the project website. This data release consists of several components: (1) an input dataset and associated metadata document ("pool_inundation_observations_and_climate_and_landscape_data"); (2) an annotated R script which processes the input dataset, performs inundation modeling, and generates model predictions ("annotated_R_script_for_pool_inundation_modeling.R"); and (3) a model prediction dataset and associated metadata document...
thumbnail
Climate change has been shown to influence lake temperatures in different ways. To better understand the diversity of lake responses to climate change and give managers tools to manage individual lakes, we focused on improving prediction accuracy for daily water temperature profiles in 68 lakes in Minnesota and Wisconsin during 1980-2018. The data are organized into these items: Spatial data - One shapefile of polygons for all 68 lakes in this study (.shp, .shx, .dbf, and .prj files) Model configurations - Model parameters and metadata used to configure models (1 JSON file, with metadata for each of 68 lakes, indexed by "site_id") Model inputs - Data formatted as model inputs for predicting temperature a. Lake...
thumbnail
These data can be used to replicate the application of MWBMglacier as described in two journal articles: 1) Enhancement of a parsimonious water balance model to simulate surface hydrology in a glacierized watershed (in review), and 2) Hydrologic regime changes in a high-latitude glacierized watershed under future climate conditions (doi:10.3390/w10020128). These simulations provide results from historical and 12 future general circulation model scenarios for the period 1949-2099 to determine the potential effects of climate change on the hydrology and water quality of a snow-dominated mountainous environment. In addition to the inputs and outputs, this Data Release includes summaries of the input and output data...
The U.S. Geological Survey (USGS) has developed the PRObability of Streamflow PERmanence (PROSPER) model, a GIS raster-based empirical model that provides streamflow permanence probabilities (probabilistic predictions) of a stream channel having year-round flow for any unregulated and minimally-impaired stream channel in the Pacific Northwest region, U.S. The model provides annual predictions for 2004-2016 at a 30-m spatial resolution based on monthly or annually updated values of climatic conditions and static physiographic variables associated with the upstream basin. These values and variables, known as Continuous Parameter Grids, or CPGs, were used as the predictor variables in the model. For purposes of organization,...
thumbnail
This dataset provides bi-monthly data on seed biomass collected in shallow water habitats across the fresh to saline gradient at coastal sites in Barataria Bay, Louisiana. This project was co-funded by the South Central Climate Adaptation Science Center and the Gulf Coast Prairie and the Gulf Coastal Plains and Ozarks Landscape Conservation Cooperatives. An alternate reference to this product can be found here.
thumbnail
This collection includes several datasets related to the fraction of precipitation days that are snowy (vs. rainy) and the amount of precipitation that likely falls as snow across Alaska. Both historical and future projections are included. Files include: Climatological summaries of downscaled historical and projected decadal average monthly snowfall equivalent ("SWE", in millimeters), the ratio of snowfall equivalent to precipitation, and future change in snowfall for October to March at 771 meter spatial resolution across the state of Alaska. Historical downscaled estimates of decadal average monthly snow-day fraction ("fs", units = percent probability from 1 to 100) for each month of the decades from 1900 through...
thumbnail
While climate change is rapidly warming lakes and reservoirs, warming rates can be highly variable among systems because lake characteristics can modulate atmospheric forcing. While it is known that water clarity changes can alter lake water temperatures, it is unknown if frequently observed water clarity trends are sufficient to meaningfully impact the thermal trajectories of diverse lake populations. Using process-based modeling and empirical observations, this study demonstrates that water clarity changes of about 1% per year amplifies or suppresses warming at rates comparable to climate-induced warming. These results demonstrate that trends in water clarity, which are occurring in many lakes, may be as important...
Temperate lakes may contain both coolwater fish species such as walleye (Sander vitreus) and warmwater species such as largemouth bass (Micropterus salmoides). Recent declines in walleye and increases in largemouth bass populations have raised questions regarding the future trajectories and appropriate management actions for these important species. We developed a thermodynamic model of water temperatures driven by downscaled climate data and lake specific characteristics to estimate daily water temperature profiles for 2151 lakes in Wisconsin, USA under contemporary (1989-2014) and future (2040-2064 and 2065-2089) conditions. We correlated contemporary walleye recruitment success and largemouth bass relative abundance...
thumbnail
This projects primary goal was to provide data on occurrence and abundance of SAV resources within the fresh to saline coastal waters of the northern Gulf of Mexico, and to relate these findings to key environmental variables. The data set provides the collected data from 2013, 2014 and 2015 on site location, discrete water quality, aquatic vegetation cover and biomass by species. The same 384 sites were collected each year, between June and September. This project was co-funded by the South Central Climate Adaptation Science Center and the Gulf Coast Prairie and the Gulf Coastal Plains and Ozarks Landscape Conservation Cooperatives. An alternate reference to this product can be found here.
thumbnail
This projects primary goal was to provide data on biomass of potential seed resources located within shallow water coastal areas within fresh to saline coastal waters of the northern Gulf of Mexico. The data set provides biomass of seeds, by species or lowest practical taxon from 2013, 2014 and 2015 across 384 randomly selected sites located in shallow water coastal areas. The data were collected between June and September of each year. This data set can be merged with a dataset which reports submerged aquatic vegetation and environmental data collected at the same time (La Peyre et al. 2017; https://doi.org/10.5066/F7GH9G44). This project was co-funded by the South Central Climate Adaptation Science Center and...
thumbnail
Coastal wetland ecosystems are expected to migrate landward in response to accelerated sea-level rise. However, due to differences in topography and coastal urbanization extent, estuaries vary in their ability to accommodate wetland migration. The landward movement of wetlands requires suitable conditions, such as a gradual slope and land free of urban development. Urban barriers can constrain migration and result in wetland loss (coastal squeeze). For future-focused conservation planning purposes, there is a pressing need to quantify and compare the potential for wetland landward movement and coastal squeeze. For 41 estuaries in the northern Gulf of Mexico (i.e., the USA gulf coast), we quantified and compared...
thumbnail
Climate change has been shown to influence lake temperatures globally. To better understand the diversity of lake responses to climate change and give managers tools to manage individual lakes, we modelled daily water temperature profiles for 10,774 lakes in Michigan, Minnesota and Wisconsin for contemporary (1979-2015) and future (2020-2040 and 2080-2100) time periods with climate models based on the Representative Concentration Pathway 8.5, the worst-case emission scenario. From simulated temperatures, we derived commonly used, ecologically relevant annual metrics of thermal conditions for each lake. We included all available supporting metadata including satellite and in-situ observations of water clarity, maximum...
This product is an archive of the modeling artifacts used to produce a journal paper (Van Beusekom and Viger, 2016). The abstract for that paper follows. A module to simulate glacier runoff, PRMSglacier, was added to PRMS (Precipitation Runoff Modeling System), a distributed-parameter, physical-process hydrological simulation code. The extension does not require extensive on-glacier measurements or computational expense but still relies on physical principles over empirical relations as much as is feasible while maintaining model usability. PRMSglacier is validated on two basins in Alaska, Wolverine, and Gulkana Glacier basin, which have been studied since 1966 and have a substantial amount of data with which to...
thumbnail
In this study, we investigated the potential effect of winter climate change upon salt marsh and mangrove forest foundation species in the southeastern United States. Our research addresses the following three questions: (1) What is the relationship between winter climate and the presence and abundance of mangrove forests relative to salt marshes; (2) How vulnerable are salt marshes to winter climate change-induced mangrove forest range expansion; and (3) What is the potential future distribution and relative abundance of mangrove forests under alternative winter climate change scenarios? We developed simple winter climate-based models to predict mangrove forest distribution and relative abundance using observed...
thumbnail
Human impacts occurring throughout the Northeast and Midwest United States, including urbanization, agriculture, and dams, have multiple effects on the region’s streams which support economically valuable stream fishes. Changes in climate are expected to lead to additional impacts in stream habitats and fish assemblages in multiple ways, including changing stream water temperatures. To manage streams for current impacts and future changes, managers need region-wide information for decision-making and developing proactive management strategies. Our project met that need by integrating results of a current condition assessment of stream habitats based on fish response to human land use, water quality impairment,...


map background search result map search result map Climate warming of Wisconsin lakes can be either amplified or suppressed by trends in water clarity Data release: A large-scale database of modeled contemporary and future water temperature data for 10,774 Michigan, Minnesota and Wisconsin Lakes Submerged aquatic vegetation and environmental data for coastal areas from Texas through Alabama, 2013-2015 Submerged aquatic vegetation and environmental data along a salinity gradient in Barataria Bay, Louisiana (2015) FishTail, Indices and Supporting Data Characterizing the Current and Future Risk to Fish Habitat Degradation in the Northeast Climate Science Center Region Seed biomass from shallow coastal water areas along a salinity gradient in Barataria Bay, Louisiana (2015) Seed biomass from shallow coastal water areas from Texas through Alabama, 2013-2015 Landward migration of tidal saline wetlands with sea-level rise and urbanization: a comparison of northern Gulf of Mexico estuaries Streamflow Observation Points in the Pacific Northwest, 1977-2016 Supporting data for two MWBMglacier applications to the Copper River basin in Alaska Collection: Historical and Projected Estimates of Snow Fraction and and the Amount of Precipitation that Likely Falls as Snow Across Alaska Winter climate change and coastal wetland foundation species in the southeastern United States Model input and output for hydrologic simulations in the Rio Grande Headwaters, Colorado, using the Precipitation-Runoff Modeling System (PRMS) Process-guided deep learning predictions of lake water temperature Inundation observations and inundation model predictions for vernal pools of the northeastern United States Supporting data for two MWBMglacier applications to the Copper River basin in Alaska Climate warming of Wisconsin lakes can be either amplified or suppressed by trends in water clarity Submerged aquatic vegetation and environmental data for coastal areas from Texas through Alabama, 2013-2015 Submerged aquatic vegetation and environmental data along a salinity gradient in Barataria Bay, Louisiana (2015) Seed biomass from shallow coastal water areas along a salinity gradient in Barataria Bay, Louisiana (2015) Seed biomass from shallow coastal water areas from Texas through Alabama, 2013-2015 Process-guided deep learning predictions of lake water temperature Data release: A large-scale database of modeled contemporary and future water temperature data for 10,774 Michigan, Minnesota and Wisconsin Lakes Inundation observations and inundation model predictions for vernal pools of the northeastern United States Landward migration of tidal saline wetlands with sea-level rise and urbanization: a comparison of northern Gulf of Mexico estuaries Streamflow Observation Points in the Pacific Northwest, 1977-2016 FishTail, Indices and Supporting Data Characterizing the Current and Future Risk to Fish Habitat Degradation in the Northeast Climate Science Center Region Winter climate change and coastal wetland foundation species in the southeastern United States Collection: Historical and Projected Estimates of Snow Fraction and and the Amount of Precipitation that Likely Falls as Snow Across Alaska