Skip to main content
Advanced Search

Filters: System Type: Data Release (X) > Categories: NOT Data Release - In Progress (X) > Tags: {"type":"Subject"} (X) > partyWithName: Jeffrey A Coe (X)

7 results (83ms)   

View Results as: JSON ATOM CSV
thumbnail
Subaerial landslides at the head of Barry Arm Fjord in southern Alaska could generate tsunamis (if they rapidly failed into the Fjord) and are therefore a potential threat to people, marine interests, and infrastructure throughout the Prince William Sound region. Knowledge of ongoing landslide movement is essential to understanding the threat posed by the landslides. Because of the landslides' remote location, field-based ground monitoring is challenging. Alternatively, periodic acquisition and interferometric processing of satellite-based synthetic aperture radar data provide an accurate means to remotely monitor landslide movement. Interferometric synthetic aperture radar (InSAR) uses two Synthetic Aperture...
thumbnail
The effects of climate change have the potential to impact slope stability. Negative impacts are expected to be greatest at high northerly latitudes where degradation of permafrost in rock and soil, debuttressing of slopes as a result of glacial retreat, and changes in ocean ice-cover are likely to increase the susceptibility of slopes to landslides. In the United States, the greatest increases in air temperature and precipitation are expected to occur in Alaska. In order to assess the impact that these environmental changes will have on landslide size (magnitude), mobility, and frequency, inventories of historical landslides are needed. These inventories provide baseline data that can be used to identify changes...
thumbnail
Subaerial landslides at the head of the Barry Arm fjord remain a tsunami threat for the Prince William Sound region in southern Alaska. Tasked RADARSAT-2 synthetic aperture radar (SAR) data from two ultrafine beam modes (2 m), U19 and U15, were used to measure landslide movement of slopes near the toe of the Barry Glacier between 21 May 2021 and 5 November 2021. Data were acquired every 24 days, with U19 beginning on 21 May 2021 and U15 beginning on 28 May 2021. For a few planned acquisition dates, scenes were not captured because of technical issues. Interferometric synthetic aperture radar (InSAR) deformation maps (interferograms) are provided in wrapped phase (line-of-sight (LOS) phase in radians between 0 and...
thumbnail
On September 20, 2017, Hurricane Maria hit the U.S. territory of Puerto Rico as a category 4 storm. Heavy rainfall caused landslides in mountainous regions throughout the territory. This data release presents geospatial data describing the concentration of landslides generated by Hurricane Maria in Puerto Rico. We used post-hurricane satellite and aerial imagery collected between September 26, 2017 and October 8, 2017 to visually estimate the concentration of landslides over nearly the whole territory. This was done by dividing the territory into a grid with 4 square km cells (2 km x 2 km). Each 4 square km grid cell was classified as either containing no landslides, fewer than 25 landslides/ square km or more than...
thumbnail
Mass-wasting events that displace water, whether they initiate from underwater sources (submarine landslides) or subaerial sources (subaerial-to-submarine landslides), have the potential to cause tsunami waves that can pose a significant threat to human life and infrastructure in coastal areas (for example towns, cruise ships, bridges, oil platforms, and communication lines). Sheltered inlets and narrow bays can be locations of especially high risk as they often have higher human populations, and the effects of water displacement from moving sediment can be amplified as compared to the effects from similarly sized mass movements in open water. In landscapes undergoing deglaciation, such as the fjords and mountain...
thumbnail
Glacial retreat and mountain-permafrost degradation resulting from rising global temperatures have the potential to impact the frequency and magnitude of landslides in glaciated environments. In the Saint Elias Mountains of southeast Alaska, the presence of weak sedimentary and metamorphic rocks and active uplift resulting from the collision of the Yakutat and North American tectonic plates create landslide-prone conditions (Winkler et al., 2000). We used Landsat imagery to create an inventory of large (>0.1 square km) rock avalanches that occurred along the south flank of the Saint Elias Mountains between 1984 and 2019 as a baseline for present and future changes in landslide magnitude and frequency. This data...
thumbnail
Two active landslides at and near the retreating front of Barry Glacier at the head of Barry Arm Fjord in southern Alaska (Figure 1) could generate tsunamis if they failed rapidly and entered the water of the fjord. Landslide A, at the front of the glacier, is the largest, with a total volume estimated at 455 M m3 (Dai et al, 2020). Historical photographs from Barry Arm indicate that Landslide A initiated in the mid twentieth century, but there was a large pulse of movement between 2010 and 2017 when Barry Glacier thinned and retreated from about 1/2 of the toe of Landslide A (Dai et al., 2020). The glacier has continued to retreat since 2017. Interferometric synthetic aperture radar (InSAR) investigations of the...


    map background search result map search result map Inventory of rock avalanches in western Glacier Bay National Park and Preserve, Alaska, 1984-2016: a baseline data set for evaluating the impact of climate change on avalanche magnitude, mobility, and frequency Map data showing concentration of landslides caused by Hurricane Maria in Puerto Rico Inventory map of submarine and subaerial-to-submarine landslides in Glacier Bay, Glacier Bay National Park and Preserve, Alaska Inventory data of rock avalanches in the Saint Elias Mountains of southeast Alaska, derived from Landsat imagery (1984-2019) Interferometric synthetic aperture radar data from 2020 for landslides at Barry Arm Fjord, Alaska Map of landslide structures and kinematic elements at Barry Arm, Alaska in the summer of 2020 Interferometric synthetic aperture radar data from 2021 for landslides at Barry Arm Fjord, Alaska Map of landslide structures and kinematic elements at Barry Arm, Alaska in the summer of 2020 Interferometric synthetic aperture radar data from 2020 for landslides at Barry Arm Fjord, Alaska Interferometric synthetic aperture radar data from 2021 for landslides at Barry Arm Fjord, Alaska Inventory data of rock avalanches in the Saint Elias Mountains of southeast Alaska, derived from Landsat imagery (1984-2019) Inventory map of submarine and subaerial-to-submarine landslides in Glacier Bay, Glacier Bay National Park and Preserve, Alaska Inventory of rock avalanches in western Glacier Bay National Park and Preserve, Alaska, 1984-2016: a baseline data set for evaluating the impact of climate change on avalanche magnitude, mobility, and frequency Map data showing concentration of landslides caused by Hurricane Maria in Puerto Rico