Skip to main content
Advanced Search

Filters: Tags: {"scheme":"Data Categories for Marine Planning","name":"water column features"} (X)

48 results (26ms)   

View Results as: JSON ATOM CSV
thumbnail
Time series data of water surface elevation and wave height were acquired at ten locations for 517 days (in three separate deployments) off the north coast of Roi-Namur Island, Kwajalein Atoll, Marshall Islands, in support of a study on the coastal circulation patterns and the transformation of surface waves over the coral reefs. The relative placement of sensors on the reefs were as follows: ROI13W1 and ROI13E1 – fore reef ROI13W2 and ROI13E2 – outer reef flat ROI13W1 and ROI13E1 – middle reef flat ROI13W1 and ROI13E1 – inner reef flat
thumbnail
This dataset consists of physics-based Delft3D model and Delwaq model input files used in modeling sediment deposition and concentrations around the coral reefs of west Maui, Hawaii. The Delft3D models were used to simulate waves and currents under small (SC1) and large (‘SC2’) wave conditions for current stream discharge (‘Alt1’) and stream discharge with watershed restoration (‘Alt3’). Delft3D model results were subsequently used as forcing conditions for Delwaq models to simulate sediment transport and dispersion. The Delwaq models were used to simulate sediment transport and concentrations under the same two wave and stream discharge scenarios. The Delwaq models were run using forcing conditions generated by...
thumbnail
CTD (Conductivity Temperature Depth) data were collected offshore of California and Oregon from October to November 2019 during NOAA cruise RL-19-05 (USGS field activity 2019-672-FA). This data release supersedes version 1.0, published in August 2020 at https://doi.org/10.5066/P9ZS1JX8. Versioning details are documented in the accompanying VersionHistory_P9JKYWQU.txt file.
thumbnail
Time-series data of water-surface elevation, wave height, water-column currents, temperature were acquired for 6 days off the north coast of the island of Kauai, Hawaii in support of a study on the coastal circulation patterns and groundwater input to the coral reefs of Makua.
thumbnail
A three-dimensional hydrodynamic and sediment transport model application of the mouth of the Columbia River (MCR) was constructed using the Delft3D4 (D3D) modeling suite (Deltares, 2021) to simulate water levels, flow, waves, and sediment transport for time period of September 22, 2020 to March 10, 2021. The model was used to predict the dispersal of sediment from a submerged, nearshore berm composed of sediment that was dredged from the entrance to the MCR navigation channel and placed on the northern flank of the ebb-tidal delta. This data release describes the development and validation of the model application and provides input files suitable to run the models on D3D software version 4.04.01.
thumbnail
This data release includes representative cluster profiles (RCPs) from a large (>24,000) selection of coral reef topobathymetric cross-shore profiles (Scott and others, 2020). We used statistics, machine learning, and numerical modelling to develop the set of RCPs, which can be used to accurately represent the shoreline hydrodynamics of a large variety of coral reef-lined coasts around the globe. In two stages, the data were reduced by clustering cross-shore profiles based on morphology and hydrodynamic response to typical wind and swell wave conditions. By representing a large variety of coral reef morphologies with a reduced number of RCPs, a computationally feasible number of numerical model simulations can be...
thumbnail
Tidal water discharge within two breaches constructed in a former flood-control levee of a restored agricultural area in Port Susan, Washington, was measured repeatedly during several tidal cycles. Measurements were made on March 27, 2014, April 16, 2014, May 18, 2014, and May 29, 2014 at breach PSB1, and on May 29, 2014 at breach PSB2. These data were collected using a boat-mounted Teledyne RDI RiverRay 600 kHz acoustic Doppler current profiler (ADCP) or a Teledyne RDI StreamPro 2000 kHz ADCP, depending on date. ADCP transect data were collected and initially reviewed using WinRiver II software and reprocessing and final review was completed with QRev software.
thumbnail
This data set consists of physics-based Delft3D-FLOW and SWAN hydrodynamic models input files used to study the wave-induced 3D flow over spur-and-groove (SAG) formations. SAG are a common and impressive characteristic of coral reefs. They are composed of a series of submerged shore-normal coral ridges (spurs) separated by shore-normal patches of sediment (grooves) on the fore reef of coral reef environments. Although their existence and geometrical properties are well documented, the literature concerning the hydrodynamics around them is sparse. Here, the three-dimensional flow patterns over SAG formations, and a sensitivity of those patterns to waves, currents, and SAG geometry were examined. Shore-normal shoaling...
thumbnail
Spatial surveys of water column physical properties were acquired with a conductivity-temperature-depth (CTD) profiler for four days in February 2015 and one day in July 2015 off the north coast of the island of Tutuila, American Samoa in support of a study on the coastal circulation patterns within and in the vicinity of the National Park of American Samoa.
thumbnail
Projected wave climate trends from WAVEWATCH3 model output were used as input for nearshore wave models (for example, SWAN) for the main Hawaiian Islands to derive data and statistical measures (mean and top 5 percent values) of wave height, wave period, and wave direction for the recent past (1996-2005) and future projections (2026-2045 and 2085-2100). Three-hourly global climate model (GCM) wind speed and wind direction output from four different GCMs provided by the Coupled Model Inter-Comparison Project, phase 5 (CMIP5), were used as boundary conditions to the physics-based WAVEWATCH3 numerical wave model for the area encompassing the main Hawaiian islands. Two climate change scenarios for each of the four GCMs...
thumbnail
Time series data of wave height and water surface elevation were acquired for 399 days at four locations on the southern reef of Ofu, American Samoa, in support of a study on submarine groundwater dynamics on this reef within the National Park of American Samoa’s Ofu Unit. The relative placement of sensors on the reef were as follows: OFU20E03 – mid reef at East site; OFU20E04 – inner reef at East site; OFU20W03 – mid reef at West site; OFU20W04 – inner reef at West site.
thumbnail
Time series data of water surface elevation and wave height were acquired at ten locations for 153 days off San Juan, on the north coast of Puerto Rico, in support of a study on the transformation of surface waves and resulting water levels over the coral reefs. The relative placement of sensors on the reefs were as follows: PRI18E01, PRI18W01 – fore reef PRI18E02, PRI18W02 – reef crest PRI18E03, PRI18W03 – outer reef flat PRI18E04, PRI18W04 – middle reef flat PRI18E05, PRI18W05 – inner reef flat PRI18E06 – lagoon PRI18E07 – near-shore
thumbnail
Time series data of water surface elevation, wave height, and water column currents and temperature were acquired at seven locations for 86 days off of Waiakane on the south coast of the island of Molokai, Hawaii, in support of a study on the coastal circulation patterns and the transformation of surface waves over the coral reefs.
A process-based wave-resolving hydrodynamic model (XBeach Non-Hydrostatic, ‘XBNH’) was used to create a large synthetic database for use in a “Bayesian Estimator for Wave Attack in Reef Environments” (BEWARE), relating incident hydrodynamics and coral reef geomorphology to coastal flooding hazards on reef-lined coasts. Building on previous work, BEWARE improves system understanding of reef hydrodynamics by examining the intrinsic reef and extrinsic forcing factors controlling runup and flooding on reef-lined coasts. The Bayesian estimator has high predictive skill for the XBNH model outputs that are flooding indicators, and was validated for a number of available field cases. BEWARE is a potentially powerful tool...
thumbnail
Schematic atoll models with varying theoretical morphologies were used to evaluate the relative control of individual morphological parameters on alongshore transport gradients. Here we present physics-based numerical SWAN model results of incident wave transformations for a range of atoll and island morphologies and sea-level rise scenarios. Model results are presented in NetCDF format, accompanied by a README text file that lists the parameters used in each model run. These data accompany the following publication: Shope, J.B., and Storlazzi, C.D., 2019, Assessing morphologic controls on atoll island alongshore sediment transport gradients due to future sea-level rise: Frontiers in Marine Science, doi:10.3389/fmars.2019.00245.
thumbnail
A model application using the phase-averaged wave model SWAN (in Delft3D) was developed to simulate wind waves in South San Francisco Bay, California, between 30 May 2021 and 19 May 2022. This data release describes the development of the model application, provides input files, and includes output from the model simulations in netCDF format. Model Application The model application included two domains (Fig. 1) that were 1-way coupled. The coarse overall model domain (wsfb_g1.grd) included the coastal ocean across the entire San Francisco Sacramento/San Joaquin Bay-Delta region was forced along the oceanic boundaries with measured time-varying, spatially uniform wave parameters derived from the Coastal Data Information...
thumbnail
Satellite-tracked, DGPS-equipped Lagrangian surface-current drifter deployments were conducted over 6 days between 30 July and 4 August 2016 at various locations and stages of the tide over the coral reef off Makua, HI. The drifters internally logged their location every 1 minute, and they transmitted their positions to satellites every 5 minutes. A drogue was attached to the drifters at 1 m below sea level in order to track the currents at that depth.


map background search result map search result map Conductivity-Temperature-Depth (CTD) profile data in the National Park of American Samoa, Tutuila, American Samoa, 2015 Dynamically downscaled future wave projections from SWAN model results for the main Hawaiian Islands Time-series oceanographic data collected off Makua, Kauai, USA, August 2016 Deployments of autonomous, GPS ocean ocean-surface drifters, Makua, Kauai, USA, August 2016 Nearshore Electrical Resistivity Tomography (ERT) profile data, Makua, Kauai, USA, August 2016 Time-series oceanographic data of currents and waves from bottom-mounted instrument packages off Waiakane, Molokai, HI, 2018 Roi-Namur Island, Marshall Islands, wave and water level data, 2013-2015 San Juan, Puerto Rico, wave and water level data, 2018-2019 Discharge measurements collected in the Stillaguamish River Delta, Port Susan, Washington, USA in March, April, and May 2014 Time-series oceanographic data collected from reef flat and lagoon sediment dynamics packages in 2016 off Jurabi Point, Ningaloo Reef, Western Australia (ver. 2.0) Hydrodynamic and sediment transport model of the mouth of the Columbia River, Washington and Oregon, 2020-2021 CTD profile measurements collected off California and Oregon during NOAA cruise RL-19-05 (USGS field activity 2019-672-FA) from October to November 2019 Model parameter input files to compare effects of stream discharge scenarios on sediment deposition and concentrations around coral reefs off west Maui, Hawaii Physicochemical measurements of the coastal aquifer and coastal groundwater discharge on Kalaupapa, Moloka'i, Hawaii Modeled surface waves from winds in South San Francisco Bay Ofu, American Samoa, wave and water level data, 2020 Nearshore Electrical Resistivity Tomography (ERT) profile data, Makua, Kauai, USA, August 2016 Deployments of autonomous, GPS ocean ocean-surface drifters, Makua, Kauai, USA, August 2016 Time-series oceanographic data collected off Makua, Kauai, USA, August 2016 Physicochemical measurements of the coastal aquifer and coastal groundwater discharge on Kalaupapa, Moloka'i, Hawaii Time-series oceanographic data of currents and waves from bottom-mounted instrument packages off Waiakane, Molokai, HI, 2018 Roi-Namur Island, Marshall Islands, wave and water level data, 2013-2015 San Juan, Puerto Rico, wave and water level data, 2018-2019 Discharge measurements collected in the Stillaguamish River Delta, Port Susan, Washington, USA in March, April, and May 2014 Time-series oceanographic data collected from reef flat and lagoon sediment dynamics packages in 2016 off Jurabi Point, Ningaloo Reef, Western Australia (ver. 2.0) Ofu, American Samoa, wave and water level data, 2020 Conductivity-Temperature-Depth (CTD) profile data in the National Park of American Samoa, Tutuila, American Samoa, 2015 Model parameter input files to compare effects of stream discharge scenarios on sediment deposition and concentrations around coral reefs off west Maui, Hawaii Modeled surface waves from winds in South San Francisco Bay Hydrodynamic and sediment transport model of the mouth of the Columbia River, Washington and Oregon, 2020-2021 Dynamically downscaled future wave projections from SWAN model results for the main Hawaiian Islands CTD profile measurements collected off California and Oregon during NOAA cruise RL-19-05 (USGS field activity 2019-672-FA) from October to November 2019