Skip to main content
Advanced Search

Filters: Tags: {"scheme":"ISO 19115 Topic Category","name":"elevation"} (X) > Types: Downloadable (X)

231 results (44ms)   

View Results as: JSON ATOM CSV
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
This data release contains coastal wetland synthesis products for Massachusetts, developed in collaboration with the Massachusetts Office of Coastal Zone Management. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands....
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Buzzards Bay, Cape Cod, Cape Cod Bay, Cape Cod National Seashore, Danvers River, All tags...
thumbnail
This digital elevation model provides a tool for calibrating tsunami risk to observations of the 1945 Makran tsunami in Karachi Harbour. The DEM bathymetry is derived from soundings made mainly during the first eight years after the tsunami. Although deficient in portraying intertidal backwaters and upland topography, the DEM accurately depicts the sheltered setting of one of the two tide gauges that recorded the 1945 tsunami.
thumbnail
This imagery dataset consists of 3-meter resolution, lidar-derived imagery of the Carlisle 30 x 60 minute quadrangle in Pennsylvania. The source data used to construct this imagery consists of 1-meter resolution lidar-derived digital elevation models (DEMs). The lidar source data were compiled from different acquisitions published between 2019 and 2020 and downloaded from the USGS National Map TNM Download. The data were processed using geographic information systems (GIS) software. The data is projected in WGS 1984 Web Mercator. This representation illustrates the terrain as a hillshade with contrast adjusted to highlight local relief according to a topographic position index (TPI) calculation.
thumbnail
High-resolution single-channel Chirp and minisparker seismic-reflection data were collected by the U.S. Geological Survey in September and October 2006, offshore Bolinas to San Francisco, California. Data were collected aboard the R/V Lakota, during field activity L-1-06-SF. Chirp data were collected using an EdgeTech 512 chirp subbottom system and were recorded with a Triton SB-Logger. Minisparker data were collected using a SIG 2-mille minisparker sound source combined with a single-channel streamer, and both were recorded with a Triton SB-Logger.
thumbnail
High-resolution single-channel minisparker seismic-reflection data were collected by the U.S. Geological Survey in September and October 2006 offshore Bolinas to San Francisco, California. Data were collected aboard the R/V Lakota, during field activity L-1-06-SF. Minisparker data were collected using a SIG 2-mille minisparker sound source combined with a single-channel streamer, and recorded with a Triton SB-Logger.
thumbnail
This bathymetric dataset provides an update to the stage-storage relation for Quail Lake (reservoir) located in the El Dorado National Forest, Calif. Bathymetric data was collected using a multibeam echo sounder to provide near-complete coverage and was merged with USGS 3DEP lidar to compute a DEM of the lake and near shore. The DEM was used to computed storage and surface area for a range of stage elevations. Results show that the spillway elevation was 6799.3 feet (NAVD88) and the crest elevation was 6802.5 feet (NAVD88). At the spillway elevation the storage was 141.74 ac-ft with a surface area of 14.20 ac. At the crest elevation the storage was 190.05 ac-ft with a surface area of 15.89 ac.
thumbnail
This dataset is a digital elevation model (DEM) of the beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, Minnesota. The DEM has a 10-meter (m; 32.8084 feet) cell size and was created from a LAS dataset of terrestrial light detection and ranging (lidar) data representing the beach topography, and multibeam sonar data representing the bathymetry. The survey area extends approximately 0.85 kilometers (0.5 miles) offshore, for an approximately 1.87 square kilometer surveyed area. Lidar data were collected September 23, 2020 using a boat mounted Velodyne unit. Multibeam sonar data were collected September 22-23, 2020 using a Norbit integrated wide band multibeam system compact (iWBMSc)...
thumbnail
This dataset is a digital elevation model (DEM) of the beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, Minnesota. The DEM has a 5-meter (m; 16.404 feet) cell size and was created from a LAS dataset of terrestrial light detection and ranging (lidar) data representing the beach topography, and multibeam sonar data representing the bathymetry. The survey area extends approximately 0.85 kilometers (0.5 miles) offshore, for an approximately 1.87 square kilometer surveyed area. Lidar data were collected September 23, 2020 using a boat mounted Velodyne unit. Multibeam sonar data were collected September 22-23, 2020 using a Norbit integrated wide band multibeam system compact (iWBMSc)...
thumbnail
This dataset is the survey area footprint for the beach topography and near-shore bathymetry of Lake Superior at Minnesota Point, Duluth, Minnesota. The survey footprint represents a LAS dataset of terrestrial light detection and ranging (lidar) of beach topography and multibeam sonar bathymetry to approximately 1 kilometer (0.62 miles) offshore, for an approximately 2.27 square kilometer surveyed area. The surveys were completed July 20 - July 23, 2020.
From May 2017 to November 2019, the U.S. Geological Survey conducted bathymetric surveys of New York City's East of Hudson Reservoirs. Bathymetry data were collected at Kirk Lake during June 2017. Depth data were collected primarily with a multibeam echosounder. Quality assurance points were measured with a single-beam echosounder. Water surface elevations were established using real-time kinematic (RTK) and static global navigation satellite system (GNSS) surveys and submersible pressure transducers. Measured sound velocity profiles were used to correct echosounder depth measurements for thermal stratification. Digital elevation models were created by combining the measured bathymetry data with lidar elevation...
From May 2017 to November 2019, the U.S. Geological Survey conducted bathymetric surveys of New York City's East of Hudson Reservoirs. Bathymetry data were collected at Lake Gleneida during May 2017. Depth data were collected primarily with a multibeam echosounder. Quality assurance points were measured with a single-beam echosounder. Water surface elevations were established using real-time kinematic (RTK) and static global navigation satellite system (GNSS) surveys and submersible pressure transducers. Measured sound velocity profiles were used to correct echosounder depth measurements for thermal stratification. Digital elevation models were created by combining the measured bathymetry data with lidar elevation...
thumbnail
This dataset is a LAS dataset containing light detection and ranging (lidar) data and sonar data representing the beach and near-shore topography of Minnesota Point near the Superior Entry of Lake Superior, Duluth, Minnesota. The LAS data sets were used to create a digital elevation model (DEM) of the approximately 2.27 square kilometer surveyed area. Lidar data were collected using a boat mounted Velodyne unit. Multibeam sonar data were collected using a Norbit integrated wide band multibeam system compact (iWBMSc) sonar unit. Single-beam sonar data were collected using a Ceescope sonar unit. All elevation data were collected September 15-17, 2021. Methodology similar to Wagner, D.M., Lund, J.W., and Sanks, K.M.,...
thumbnail
This dataset represents post-nourishment digital elevation models (DEMs) of the beach topography and near-shore bathymetry of Minnesota Point near the Duluth Entry of Lake Superior, Duluth, Minnesota. The Lidar DEM has a 1-meter (m; 3.28084 feet) cell size and was created from a LAS dataset of terrestrial light detection and ranging (lidar) data representing the beach topography. The topobathy DEMs have a 10-meter (m; 32.8084 feet) or a 5-meter (m; 16.4042 feet) cell size, and were created from a combined LAS dataset of lidar data representing the beach topography, and single-beam and multibeam sonar data representing the bathymetry. The survey area extends approximately 1 kilometers (0.62 miles) offshore, for an...
thumbnail
Marine geophysical mapping of the Queen Charlotte Fault in the eastern Gulf of Alaska was conducted in 2016 as part of a collaborative effort between the U.S. Geological Survey and the Alaska Department of Fish and Game to understand the morphology and subsurface geology of the entire Queen Charlotte system. The Queen Charlotte fault is the offshore portion of the Queen Charlotte-Fairweather Fault: a major structural feature that extends more than 1,200 kilometers from the Fairweather Range of southern Alaska to northern Vancouver Island, Canada. The data published in this data release were collected along the Queen Charlotte Fault between Cross Sound and Noyes Canyon, offshore southeastern Alaska from May 18 to...
thumbnail
This dataset is a polygon shapefile delineating the footprint of bathymetric data collected in October, 2021 for an approximately 500 meter (m) reach of the Kalamazoo River upstream of Plainwell, Michigan (MI). Bathymetric data in the river channel were collected with a single beam sonar and Acoustic Current Doppler Profiler operated along 2 longitudinal transects and 48 cross-sectional transects, respectively.


map background search result map search result map Bathymetric and topographic grid intended for simulations of the 1945 Makran tsunami in Karachi Harbour Chirp and minisparker seismic-reflection data of field activity L-1-06-SF collected offshore Bolinas to San Francisco, California from 2006-09-25 to 2006-10-03 Minisparker seismic-reflection data from field activity L-1-06-SF collected offshore Bolinas to San Francisco, California from 2006-09-25 to 2006-10-03 ElevMHW: Elevation adjusted to local mean high water: Fire Island, NY, 2014 Multibeam bathymetric data collected in the eastern Gulf of Alaska during USGS Field Activity 2016-625-FA using a Reson 7160 multibeam echosounder (10 meter resolution, 32-bit GeoTIFF, UTM 8 WGS 84, WGS 84 Ellipsoid) ElevMHW: Elevation adjusted to local mean high water: Rhode Island National Wildlife Refuge, RI, 2014 Geospatial bathymetry datasets for Kirk Lake, New York, 2017 Geospatial bathymetry datasets for Lake Gleneida, New York, 2017 Minnesota Point: Survey area of beach topography and near-shore bathymetry of Lake Superior at Minnesota Point, Duluth, MN, July 2020 Vegetation classification model (Veg) for basin A1 Digital terrain model (DTM) for basin B1 Final surface model (SRF) for basin B1 Elevation of marsh units in Massachusetts salt marshes Duluth Entry: 10-meter Digital elevation model (DEM) of beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, MN, September 2020 Duluth Entry: 5-meter Digital elevation model (DEM) of beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, MN, September 2020 Bathymetric survey and stage-storage assessment of Quail Lake, Calif., collected in 2022 LAS dataset of lidar, single-beam, and multibeam sonar data collected of Minnesota Point near the Superior Entry of Lake Superior, Duluth, MN, September 2021 Digital elevation models (DEMs) of beach topography and near-shore bathymetry of Minnesota Point, near the Superior Entry of Lake Superior, Duluth, MN, September 2021 Footprint of bathymetry data collected for a Kalamazoo River Reference Reach upstream of Plainwell, Michigan, in 2021 Enhanced Terrain Imagery of the Carlisle 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Footprint of bathymetry data collected for a Kalamazoo River Reference Reach upstream of Plainwell, Michigan, in 2021 Geospatial bathymetry datasets for Lake Gleneida, New York, 2017 Bathymetric survey and stage-storage assessment of Quail Lake, Calif., collected in 2022 Vegetation classification model (Veg) for basin A1 Duluth Entry: 10-meter Digital elevation model (DEM) of beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, MN, September 2020 Duluth Entry: 5-meter Digital elevation model (DEM) of beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, MN, September 2020 Geospatial bathymetry datasets for Kirk Lake, New York, 2017 Minnesota Point: Survey area of beach topography and near-shore bathymetry of Lake Superior at Minnesota Point, Duluth, MN, July 2020 Digital terrain model (DTM) for basin B1 Final surface model (SRF) for basin B1 LAS dataset of lidar, single-beam, and multibeam sonar data collected of Minnesota Point near the Superior Entry of Lake Superior, Duluth, MN, September 2021 Digital elevation models (DEMs) of beach topography and near-shore bathymetry of Minnesota Point, near the Superior Entry of Lake Superior, Duluth, MN, September 2021 Bathymetric and topographic grid intended for simulations of the 1945 Makran tsunami in Karachi Harbour Minisparker seismic-reflection data from field activity L-1-06-SF collected offshore Bolinas to San Francisco, California from 2006-09-25 to 2006-10-03 Chirp and minisparker seismic-reflection data of field activity L-1-06-SF collected offshore Bolinas to San Francisco, California from 2006-09-25 to 2006-10-03 Enhanced Terrain Imagery of the Carlisle 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Elevation of marsh units in Massachusetts salt marshes Multibeam bathymetric data collected in the eastern Gulf of Alaska during USGS Field Activity 2016-625-FA using a Reson 7160 multibeam echosounder (10 meter resolution, 32-bit GeoTIFF, UTM 8 WGS 84, WGS 84 Ellipsoid)