Skip to main content
Advanced Search

Filters: Tags: {"scheme":"http://gcmd.nasa.gov/learn/keywords.html"} (X) > partyWithName: Northwest Boreal Landscape Conservation Cooperative (X)

41 results (17ms)   

View Results as: JSON ATOM CSV
thumbnail
The Yukon North Slope is an arctic “hot spot” of climate change-induced effects with profound significance for the Inuvialuit and the larger region. In 1984, the Inuvialuit entered into a land claim agreement – the Inuvialuit Final Agreement (IFA) – with the governments of Canada, Yukon and Northwest Territories. A co-management body formed to make a plan, which was developed in 2003 but never ratified and is now considered out-of-date. Round River Conservation Studies is assisting WMAC(NS) in the collection, development and synthesis of spatial data, models and analyses of cultural and ecological values of the YNS.The project is a collaboration among the NWB LCC, Round River Conservation Studies, and the Arctic...
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
The Integrated Ecosystem Model is designed to help resource managers understand the nature and expected rate of landscape change. Maps and other products generated by the IEM will illustrate how arctic and boreal landscapes are expected to alter due to climate-driven changes to vegetation, disturbance, hydrology, and permafrost. The products will also provide resource managers with an understanding of the uncertainty in the expected outcomes.
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
We mosaicked twelve LandSat-8 OLI satellite images taken during the summer of 2014, which were used in an object based image analysis (OBIA) to classify the landscape. We mapped seventeen of the most dominant geomorphic land cover classes on the ACP: (1) Coastal saline waters, (2) Large lakes, (3) Medium lakes, (4) Small lakes, (5) Ponds, (6) Rivers, (7) Meadows, (8) Coalescent low-center polygons, (9) Low-center polygons, (10) Flat-center polygons, (11) High-center polygons, (12) Drained slope, (13) Sandy barrens, (14) Sand dunes, (15) Riparian shrub, (16) Ice, and (17) Urban (i.e. towns and roads). Mapped products were validated with an array of oblique aerial/ground based photography (Jorgenson et al., 2011)...
thumbnail
This pilot project has initiated a long-term integrated modeling project that aims todevelop a dynamically linked model framework focused on climate driven changes tovegetation, disturbance, hydrology, and permafrost, and their interactions and feedbacks.This pilot phase has developed a conceptual framework for linking current state-of-thesciencemodels of ecosystem processes in Alaska – ALFRESCO, TEM, GIPL-1 – and theprimary processes of vegetation, disturbance, hydrology, and permafrost that theysimulate. A framework that dynamically links these models has been defined and primaryinput datasets required by the models have been developed.
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
These raster datasets are output from the Geophysical Institute Permafrost Lab (GIPL) model and represents simulated mean annual ground temperature (MAGT) in Celsius, averaged across a decade, at the base of active layer or at the base of the seasonally frozen soil column. These data were generated by driving the GIPL model with a composite of five GCM model outputs for the A1B emissions scenario. The file name specifies the decade the raster represents. For example, a file named MAGT_1980_1989.tif represents the decade spanning 1980-1989. Cell values represent simulated mean annual ground temperature (degree C) at the base of the active layer (for areas with permafrost) or at the base of the soil column that is...
thumbnail
The Northwest Boreal Landscape Conservation Cooperative (NWB LCC) is a partnership between agencies involved in land management across Alaska, Yukon, Northwest Territories, and British Columbia. The NWB LCC aims to coordinate science and support to decision makers for improving land management decisions. Knowledge gaps have been identified by the NWB LCC and are beginning to be filled. One of the priority information gaps is knowledge of the anthropogenic footprint currently on the landscape.The anthropogenic footprint is all the disturbance types made by various human activities, usually through some form of industrial development. Examples include roads, power lines, pipelines, and clear cuts among many others....
Categories: Collection, Data; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Academics & scientific researchers, BUILDINGS, BUILDINGS, BUILDINGS, BUILDINGS, All tags...
Describing the social network that links the interconnected partners is the first step to leverage the network’s capacity to be greater than the sum of its parts. The Northwest Boreal Landscape Conservation Cooperative partners and a social network scientist are applying social network theory to create a system of nodes and edges of a Conservation Social Network. The LCC partners were surveyed in 2015 and again in 2018, in order to measure the dynamics of partner communication. From this research, the partnership aims to better leverage partner expertise and better facilitate collaboration across geographic and organizational boundaries.
Categories: Data, Project; Tags: Academics & scientific researchers, COMMUNICATIONS, COMMUNICATIONS, COMMUNICATIONS, COMMUNICATIONS, All tags...
Northwest Boreal Landscape Conservation Cooperative (NWB LCC) partners are working to collectively design a sustainable future for the people, cultures, and ecosystems in the region. To begin this difficult task, the partners asked for a review and synthesis of existing natural resource management plans, covering both countries and all four states, provinces and territories. The NWB LCC Steering Committee believes that it is important to both be in alignment with current goals and objectives for land and resources, and to build on the work already completed by agencies, organizations and research institutions. The review summarized and synthesized 120 management plan goals within the NWB LCC geography. Goals and...
thumbnail
The Integrated Ecosystem Model for Alaska project (IEM) uses down-scaled climate models as the drivers of ecosystem change to produce forecasts of future fire, vegetation, permafrost and hydrology regimes at a resolution of 1km. This effort is the first to model ecosystem change on a statewide scale, using climate change input as a major driving variable. The objectives of the IEM project are as follows; to better understand and predict effects of climate change and other stressors on landscape level physical and ecosystem processes, and to provide support for resource conservation planning.The IEM will provide resource managers with a decision support tool to visualize future landscapes in Alaska. Model outputs...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Academics & scientific researchers, DYNAMIC VEGETATION/ECOSYSTEM MODELS, DYNAMIC VEGETATION/ECOSYSTEM MODELS, Datasets/Database, Federal resource managers, All tags...
thumbnail
These raster datasets represent output from the Boreal ALFRESCO (Alaska Frame Based Ecosystem Code) model. Boreal ALFRESCO operates on an annual time step, in a landscape composed of 1 x 1 km pixels, a scale appropriate for interfacing with mesoscale climate and carbon models. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Coverage of this dataset includes much of the state of Alaska (but does exclude Southeastern AK, Kodiak Island, portions of the Alaska Peninsula, and the Aleutian...
thumbnail
The purpose of this Traditional Knowledge (TK) research is to document important habitat characteristics of the selected focal fish and wildlife species based on the observations of traditional land users. The information may be used to develop habitat models to show where these specific fish and wildlife habitats occur across the Yukon North Slope. The Traditional Knowledge may also be used to validate other types of habitat mapping or to identify specialized habitats such as movement corridors, denning areas, wintering areas.
Lack of complete snow cover for the past 3 winters in southwestern Alaska has forced agencies to postpone conducting moose surveys due to the likelihood of underestimating the population. For most regions of Alaska, the variation in moose sightability during suboptimal conditions has not yet been quantified. Because scientists are predicting less snowfall in this region over the long term, research was initiated to estimate sightability correction factors (SCFc) to apply to abundance estimates.
thumbnail
Natural resource managers and native communities have expressed a need for effectively synthesizing traditional knowledge and western science data. Often wildlife management plans are based on remotely sensed data and data collected by wildlife biologists. These data may not reflect the variables that are important to the local users, including the scale of information, names describing places or habitats, or how seasonality affects the wildlife available for harvest. The Inuvialuit of the Yukon North Slope have formed a Wildlife Advisory Council, a co-management body, comprised of federal, territorial, and Inuvialuit representatives, and they are working closely with researchers from the Round River Organization...


map background search result map search result map Integrated Ecosystem Model (AIEM) for Alaska and Northwest Canada Yukon Slope Wildlife Management Plan Research Description and Data Collection Manual for the Collection of Traditional Knowledge of the Yukon North Slope Traditional Land Users Alaskan Arctic Coastal Plain Polygonal Geomorphology Map Simulated Mean Annual Ground Temperature Potential Evapotranspiration: CCCMA - A1B Scenario Integrated Ecosystem Model Reports IEM-CSC Factsheet with Supplement, 2015 Stand Age Projections Historical Stand Age 1980-1989 Historical Stand Age 1870-1879 Anthropogenic Footprint- Canada Report Historical Stand Age 1940-1949 Historical Stand Age 1900-1909 Historical Stand Age 1960-1969 Historical Stand Age 1910-1919 Yukon North Slope Wildlife Management Plan Yukon North Slope Wildlife Management Plan Alaskan Arctic Coastal Plain Polygonal Geomorphology Map Yukon Slope Wildlife Management Plan Research Description and Data Collection Manual for the Collection of Traditional Knowledge of the Yukon North Slope Traditional Land Users Anthropogenic Footprint- Canada Report Integrated Ecosystem Model (AIEM) for Alaska and Northwest Canada Simulated Mean Annual Ground Temperature Potential Evapotranspiration: CCCMA - A1B Scenario Integrated Ecosystem Model Reports IEM-CSC Factsheet with Supplement, 2015 Stand Age Projections Historical Stand Age 1980-1989 Historical Stand Age 1870-1879 Historical Stand Age 1940-1949 Historical Stand Age 1900-1909 Historical Stand Age 1960-1969 Historical Stand Age 1910-1919