Skip to main content
Advanced Search

Filters: Tags: {"scheme":"https://www.sciencebase.gov/vocab/category/NCCWSC/Keyword"} (X) > partyWithName: Northwest CSC (X)

37 results (187ms)   

View Results as: JSON ATOM CSV
thumbnail
The Integrated Scenarios of the Future Northwest Environment project (an FY2012 NW CSC funded project), resulted in several datasets describing projected changes in climate, hydrology and vegetation for the 21st century over the Northwestern US. The raw data is available in netCDF format, which is a standard data file format for weather forecasting/climate change/GIS applications. However, the sheer size of these datasets and the specific file format (netCDF) for data access pose significant barriers to data access for many users. This is a particular challenge for many natural/cultural resource managers and others working on conservation efforts in the Pacific Northwest. The goal of this project was to increase...
thumbnail
The rugged landscapes of northern Idaho and western Montana support biodiverse ecosystems, and provide a variety of natural resources and services for human communities. However, the benefits provided by these ecosystems may be at risk as changing climate magnifies existing stressors and allows new stressors to emerge. Preparation for and response to these potential changes can be most effectively addressed through multi-stakeholder partnerships, evaluating vulnerability of important resources to climate change, and developing response and preparation strategies for managing key natural resources in a changing world. This project supports climate-smart conservation and management across forests of northern Idaho...
thumbnail
As the impacts of climate change amplify, understanding the consequences for wetlands will be critical for their sustainable management and conservation, particularly in arid regions such as the Columbia Plateau. The depressional wetlands in this region (wetlands located in topographic depressions where water can accumulate) are an important source of surface water during the summer months. However, their health depends directly on precipitation and evaporation, making them susceptible to changes in temperature and precipitation. Yet few tools for monitoring water movement patterns (hydrology) in and out of these landscapes currently exist, hindering efforts to model how they are changing. This project provided...
thumbnail
The Southeastern U.S. spans broad ranges of physiographic settings and contains a wide variety of aquatic systems that provide habitat for hundreds of endemic aquatic species that pose interesting challenges and opportunities for managers of aquatic resources, particularly in the face of climate change. For example, the Southeast contains the southernmost populations of the eastern brook trout and other cold-water dependent species. Climate change is predicted to increase temperatures in the South and is likely to have a substantial effect on extant populations of cold-water biota. Thus, aquatic managers are tasked with developing strategies for preserving cold-water dependent biota, such as eastern brook trout,...
thumbnail
Climate change is one of the most pressing issues facing natural resource management. The disruptions it is causing require that we change the way we consider conservation and resource management in order to ensure the future of habitats, species, and human communities. Practitioners often struggle with how to identify and prioritize specific climate adaptation actions (CAAs). Management actions may have a higher probability of being successful if they are informed by available scientific knowledge and findings; a systematic review process provides a mechanism to scientifically assess management questions. By evaluating specific actions on scientific knowledge and findings, we may be able to increase management...
thumbnail
Ecological systems are already responding to modern changes in climate. Many species are moving in directions and at rates that correspond with recent climatic change. Understanding how species distributions and abundances are likely to be altered can inform management and planning activities resulting in more robust management. We projected climate-driven changes in the abundances and distributions of 31 focal bird species in Oregon and Washington using the latest downscaled CMIP5 climate projections and corresponding vegetation model outputs. We mapped these future projections and integrated them into an existing web-based tool (http://data.pointblue.org/apps/nwcsc/) to allow managers and planners to access and...
thumbnail
Climate change is projected to cause earlier and less snowmelt, potentially reducing water availability for terrestrial and aquatic ecosystems and for municipal and agricultural water supplies. However, if forested landscapes can be managed to retain snow longer, some of these environmental and financial impacts may be mitigated. Results from our research team demonstrate that in the Pacific Northwest (PNW), opening dense forest canopies through creating forest gaps will generally lead to more snow accumulation and later melt (i.e., up to 13 weeks later). However, under certain conditions, such as locations on ridges with high wind speeds and sunny south-facing slopes, the snow that accumulated in the forest is...
thumbnail
For thousands of years, Pacific lamprey and Pacific eulachon have been important traditional foods for Native American tribes of the Columbia River Basin and coastal areas of Oregon and Washington. These fish have large ranges – spending part of their lives in the ocean and part in freshwater streams – and they require specific environmental conditions to survive, migrate, and reproduce. For these reasons, Pacific lamprey and Pacific eulachon are likely threatened by a variety of climate change impacts to both their ocean and freshwater habitats. However, to date, little research has explored these impacts, despite the importance of these species to tribal communities. This project will evaluate the effects of...
Three main folders are associated with this readme file. They are: 1. "Files", which contains two subfolders, "Dieoffs" and "PercentCover". a) The "Dieoff" subfolder contains every year's modeled cheatgrass dieoff estimates and their associated files, including a layer file. The dieoff estimates’ file format is ERDASImagine signed 16-bit. Values < -100 are underperforming relative to weather and site conditions and > 100 are performing relative to weather and site conditions. b) The "PercentCover" subfolder contains every year's modeled cheatgrass percent cover estimates and their associated files, including a layer file. The cheatgrass percent cover format is ERDAS Imagine signed 8-bit....
thumbnail
Invasive species have increasingly severe consequences for ecosystems and human communities alike. The ecological impacts of invasive species are often irreversible, and include the loss of native species and the spread of disease. Implications for human communities include damaged water transportation systems, reduced crop yields, reduced forage quality for livestock, and widespread tree death - which can lead to increases in wildfire and loss of biodiversity. Changing climate conditions may facilitate the spread of invasive species, making this a key management and conservation concern across the United States. This project will synthesize what we know about how climate change impacts the spread of invasive...
thumbnail
Climate change, drought, habitat alterations, and increasing water demands are leaving less water available for streams of the Pacific Northwest and for fish like salmon. As water levels drop, some small streams become fragmented, transforming from a ribbon of continuous habitat into a series of isolated pools. Fragmented streams may pose a serious threat to salmon. For example, juveniles that become stranded in small pools are at increased risk to overheat, starve, or be consumed by predators. Healthy salmon populations can cope with fragmentation and recover from a bad drought-year. However, many salmon populations are endangered and face long-term drought. Land and resource managers are increasingly finding...
thumbnail
Wildfires are one of the greatest threats to human infrastructure and the ecosystem services humans value in the western US, but are also necessary in fire-adapted ecosystems. Wildfire activity is widely projected to increase in response to climate change in the Northwest, but we currently lack a comprehensive understanding of what this increase will look like or what its impacts will be on a variety of ecological and hydrologic systems. This project addressed one critical part of those impacts: the islands of unburned vegetation within wildfires. Unburned islands occur naturally as wildfires burn across landscapes, and are important habitat refuges for species -- places where plants and animals survive the fire...
thumbnail
The Schitsu'umsh people (Coeur d’Alene Tribe of Idaho) have an intimate relationship with their landscape and a rich knowledge of how to interact with the environment in a way that benefits human, plant, and animal communities alike. Such knowledge and practices can provide valuable insight as to how tribal and non-tribal resource managers, communities, and governments can best respond to the effects of a changing climate. This project was a pilot effort to collect and translate indigenous knowledge and practices into shareable formats. Researchers developed documents, images, lesson plans, and innovative, interactive 3-D virtual reality simulations that effectively convey Schitsu’umsh knowledge and practices and...
thumbnail
Streams are classified as perennial (flowing uninterrupted, year-round) or intermittent (flowing part of the year) or ephemeral (flowing only during rainfall events). The classifications of “streamflow permanence” were primarily established in the middle 20th century and are often outdated and inaccurate today if they were not adjusted for changes in land use, wildfires, or climate.Understanding where streams are perennial is important for a variety of reasons. For example, perennial streams receive special regulatory protections under a variety of statutes, and provide important habitat for fish, wildlife, and other species. To predict the likelihood that streams are perennial, we compiled nearly 25,000 observations...
Categories: Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2016, CASC, Completed, Data Visualization & Tools, Data Visualization & Tools, All tags...
thumbnail
Climate change is one of the most pressing issues facing resource management. The disruptions it is causing require that we change the way we consider management in order to ensure the future of habitats, species, and human communities. Practitioners often struggle with how to identify and prioritize specific climate adaptation actions (CAAs). Management actions may have a higher probability of being successful if they are informed by available scientific knowledge and findings. The goal of the Available Science Assessment Process (ASAP) was to synthesize and evaluate the body of scientific knowledge on specific, on-the-ground CAAs to determine the conditions, timeframes, and geographic areas where particular CAAs...
thumbnail
This project was designed to use the combined strengths of the cooperators to address their concerns stemming from the degradation of arid environments in the Great Basin. The project aimed to identify the regional ecological and social costs and benefits of both immediate hydrologic modifications (low-profile constructed dams) and longer-term restoration of beavers (Castor canadensis) to these landscapes. Use of these techniques by ranchers and managers of public lands depends on these costs and benefits as well as social context and attitudes; the project aimed to assess these as well. Finally, implementation of hydrologic modifications depends on communication of benefits and costs to stakeholders who may choose...
thumbnail
The eulachon is a small fish that is both highly nutritious and culturally significant to the Chilkat and Chilkoot peoples of the Tlingit Nation in Southeast Alaska, for whom it is a traditional food. Tribal members are increasingly concerned about how climate change might stress the health and abundance of eulachon populations, which are already perceived as being low. In order to successfully manage these fisheries in light of climate change, tribal communities need information about how euchalon are vulnerable and which management strategies will help the species adapt. For this project, researchers used climate projections, monitoring data, and traditional ecological knowledge to assess the climate change vulnerability...
thumbnail
The project aimed to use existing models and data to understand how wildfires (number, size, and location) and land-use change will affect watersheds, and therefore water supply, under current conditions and future climates (through 2050) in the western U.S. The projected changes in temperature and precipitation are expected to affect water supply in two major ways: 1) decreased water availability, and 2) increased risk to watersheds via loses from fire. As the western population is projected to grow by 310 million people by 2100, this will potentially increase demand for diminishing supplies if housing growth occurs in rangelands or forested lands. Understanding watershed vulnerabilities due to changing climate,...
Since January 2011, the EROS team studying cheatgrass in the Great Basin has made significant strides developing datasets that identify cheatgrass extents and abundances and cheatgrass dieoff in and around the Winnemucca, Nevada area. Additionally, the team, in partnership with the BLM, received money from the USGS’ Northwest Climate Science Center to expand our cheatgrass dieoff study area to most of the northern Great Basin. In the Winnemucca area, we developed a regression-tree model, trained on Peterson’s cheatgrass maps, that generated a time series (2000 – 2010) of cheatgrass extents and abundances and then analyzed the relationships between this cheatgrass time series and spatially explicit site-specific...
We developed a website which details preliminary work we have conducted on cheatgrass dieoff in the Great Basin near Winnemucca, NV.


map background search result map search result map USGS-USFS Partnership to Help Managers Evaluate Conservation Strategies for Aquatic Ecosystems Based on Future Climate Projections Assessing Climate Change Impacts on Pacific Lamprey and Pacific Eulachon Identifying Climate Vulnerabilities and Prioritizing Adaptation Strategies for Eulachon Populations in Southeast Alaska Disappearing Refugia: Identifying Trends and Resilience in Unburned Islands under Climate Change Changes to Watershed Vulnerability under Future Climates, Fire Regimes, and Population Pressures Moving from Awareness to Action: Informing Climate Change Vulnerability Assessments and Adaptation Planning for Idaho and Montana National Forests Visualizing the Future Abundance and Distribution of Birds in the Northwest Forest Management Tools to Maximize Snow Retention under Climate Change Collecting and Applying Schitsu’umsh Indigenous Knowledge and Practices to Climate Change Decision Making The Available Science Assessment Process (ASAP): Evaluating the Science behind Climate Adaptation Actions An Interagency Collaboration to Develop and Evaluate New Science-Based Strategies for Great Basin Watershed Restoration in the Future Integrated Scenarios Tools: Improving the Accessibility of the Integrated Scenarios Data The Available Science Assessment Process (ASAP) Continued: Evaluating Adaptation Actions for Sea-Level Rise and Coastal Change in the Pacific Northwest Can We Conserve Wetlands Under a Changing Climate? Mapping Wetland Hydrology in the Columbia Plateau Evaluating the Effectiveness of Assisted Migration and Fish Rescue Programs Identifying Resilient Headwater Streams to Mitigate Impacts of Future Drought in the Northwest Climate Change Impacts on Invasive Species in the Northwest: A Synthesis and Path Forward Identifying Climate Vulnerabilities and Prioritizing Adaptation Strategies for Eulachon Populations in Southeast Alaska Moving from Awareness to Action: Informing Climate Change Vulnerability Assessments and Adaptation Planning for Idaho and Montana National Forests Can We Conserve Wetlands Under a Changing Climate? Mapping Wetland Hydrology in the Columbia Plateau Evaluating the Effectiveness of Assisted Migration and Fish Rescue Programs Collecting and Applying Schitsu’umsh Indigenous Knowledge and Practices to Climate Change Decision Making Visualizing the Future Abundance and Distribution of Birds in the Northwest The Available Science Assessment Process (ASAP) Continued: Evaluating Adaptation Actions for Sea-Level Rise and Coastal Change in the Pacific Northwest An Interagency Collaboration to Develop and Evaluate New Science-Based Strategies for Great Basin Watershed Restoration in the Future Forest Management Tools to Maximize Snow Retention under Climate Change The Available Science Assessment Process (ASAP): Evaluating the Science behind Climate Adaptation Actions Integrated Scenarios Tools: Improving the Accessibility of the Integrated Scenarios Data Disappearing Refugia: Identifying Trends and Resilience in Unburned Islands under Climate Change Climate Change Impacts on Invasive Species in the Northwest: A Synthesis and Path Forward Identifying Resilient Headwater Streams to Mitigate Impacts of Future Drought in the Northwest Assessing Climate Change Impacts on Pacific Lamprey and Pacific Eulachon USGS-USFS Partnership to Help Managers Evaluate Conservation Strategies for Aquatic Ecosystems Based on Future Climate Projections Changes to Watershed Vulnerability under Future Climates, Fire Regimes, and Population Pressures