Skip to main content
Advanced Search

Filters: Tags: {"scheme":"https://www.sciencebase.gov/vocab/category/NCCWSC/WaterCoastsandIce"} (X)

1,173 results (6ms)   

View Results as: JSON ATOM CSV
These data are netcdf files of the projected timing of the onset of thermal stress severe enough (>8 Degree Heating Weeks) to cause coral bleaching 2x per decade and 10x per decade (annual) under emissions scenarios RCP8.5 and RCP4.5. The projected timing (a year between 2006 and 2100) is the data value. Values are only shown for the ~60,000 four-km pixels where coral reefs are known to occur.
thumbnail
These files include historical downscaled estimates of decadal average monthly snow-day fraction ("fs", units = percent probability from 1 – 100) for each month of the decades from 1900-1909 to 2000-2009 at 771 x 771 m spatial resolution. Each file represents a decadal average monthly mean. Version 1.0 was completed in 2015 Version 2.0 was completed in 2018 These snow-day fraction estimates were produced by applying equations relating decadal average monthly temperature to snow-day fraction to downscaled decadal average monthly temperature. Separate equations were used to model the relationship between decadal monthly average temperature and the fraction of wet days with snow for seven geographic regions in the...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1111/gcb.12875/abstract): Permafrost thaw can alter the soil environment through changes in soil moisture, frequently resulting in soil saturation, a shift to anaerobic decomposition, and changes in the plant community. These changes, along with thawing of previously frozen organic material, can alter the form and magnitude of greenhouse gas production from permafrost ecosystems. We synthesized existing methane (CH 4) and carbon dioxide (CO 2) production measurements from anaerobic incubations of boreal and tundra soils from the geographic permafrost region to evaluate large-scale controls of anaerobic CO 2 and CH 4 production and compare the relative importance...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/2016EF000479/full): Glacier hypsometry provides a first-order approach for assessing a glacier's response to climate forcings. We couple the Randolph Glacier Inventory to a suite of in situ observations and climate model output to examine potential change for the ∼27,000 glaciers in Alaska and northwest Canada through the end of the 21st century. By 2100, based on Representative Concentration Pathways (RCPs) 4.5–8.5 forcings, summer temperatures are predicted to increase between +2.1 and +4.6°C, while solid precipitation (snow) is predicted to decrease by −6 to −11%, despite a +9 to +21% increase in total precipitation. Snow is predicted to undergo a pronounced...
thumbnail
These files include climatological summaries of downscaled historical and projected decadal average monthly snowfall equivalent ("SWE", in millimeters), the ratio of snowfall equivalent to precipitation, and future change in snowfall for October-March at 771-meter spatial resolution across the state of Alaska. **Derived snow variables and summaries. Data are for summary October to March Alaska climatologies for:** 1) historical and future snowfall equivalent ("SWE"), produced by multiplying snow-day fraction by decadal average monthly precipitation and summing over 6 months from October to March to estimate the total SWE on April 1. 2) historical and future ratio of SWE to precipitation ("SFEtoP"), SFEtoP is the...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/2016GB005493/abstract): Phytoplankton growth in the Gulf of Alaska (GoA) is limited by iron (Fe), yet Fe sources are poorly constrained. We examine the temporal and spatial distributions of Fe, and its sources in the GoA, based on data from three cruises carried out in 2010 from the Copper River (AK) mouth to beyond the shelf break. April data are the first to describe late winter Fe behavior before surface water nitrate depletion began. Sediment resuspension during winter and spring storms generated high “total dissolvable Fe” (TDFe) concentrations of ~1000 nmol kg−1 along the entire continental shelf, which decreased beyond the shelf break. In July, high...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/2014GL060199/abstract): While recent work demonstrates that glacial meltwater provides a substantial and relatively labile flux of the micronutrient iron to oceans, the role of high-latitude estuary environments as a potential sink of glacial iron is unknown. Here we present the first quantitative description of iron removal in a meltwater-dominated estuary. We find that 85% of “dissolved” Fe is removed in the low-salinity region of the estuary along with 41% of “total dissolvable” iron associated with glacial flour. We couple these findings with hydrologic and geochemical data from Gulf of Alaska (GoA) glacierized catchments to calculate meltwater-derived...
This data release is provided in support of Arismendi, I., Dunham, J.B., Heck, M.P., Schultz, L.D., Hockman-Wert, D.P., 2017, A statistical method to predict flow permanence in dryland streams from time series of stream temperature: Water, v. 9, no. 12, p. 946, https://doi.org/10.3390/w9120946. This code release contains all of the source code from the "Hidden Markov Model" sections of the associated manuscript. The source code was written using the R programming language (www.r-project.org, version 3.3.1). Running the code requires knowlege of the R programming language. The code snippet requires the folder location containing the data, and the site being processed, to be updated. The code requires certain R packages,...
thumbnail
Winter climate change has the potential to have a large impact on coastal wetlands in the southeastern U.S. Warmer winter temperatures and reductions in the intensity of freeze events would likely lead to mangrove forest range expansion and salt marsh displacement in parts of the U.S. Gulf of Mexico and Atlantic coast. The objective of this research was to better understand some of the ecological implications of mangrove forest migration and salt marsh displacement. The potential ecological effects of mangrove migration are diverse ranging from important biotic impacts (e.g., coastal fisheries, land bird migration; colonial nesting wading birds) to ecosystem stability (e.g., response to sea level rise and drought;...
thumbnail
Winter climate change has the potential to have a large impact on coastal wetlands in the southeastern U.S. Warmer winter temperatures and reductions in the intensity of freeze events would likely lead to mangrove forest range expansion and salt marsh displacement in parts of the U.S. Gulf of Mexico and Atlantic coast. The objective of this research was to better understand some of the ecological implications of mangrove forest migration and salt marsh displacement. The potential ecological effects of mangrove migration are diverse ranging from important biotic impacts (e.g., coastal fisheries, land bird migration; colonial nesting wading birds) to ecosystem stability (e.g., response to sea level rise and drought;...
Efforts to conserve stream and river biota could benefit from tools that allow managers to evaluate landscape-scale changes in species distributions in response to water management decisions. We present a framework and methods for integrating hydrology, geographic context and metapopulation processes to simulate effects of changes in streamflow on fish occupancy dynamics across a landscape of interconnected stream segments. We illustrate this approach using a 482 km2 catchment in the southeastern US supporting 50 or more stream fish species. A spatially distributed, deterministic and physically based hydrologic model is used to simulate daily streamflow for sub-basins composing the catchment. We use geographic data...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1111/1752-1688.12304/abstract): The hydrologic response to statistically downscaled general circulation model simulations of daily surface climate and land cover through 2099 was assessed for the Apalachicola-Chattahoochee-Flint River Basin located in the southeastern United States. Projections of climate, urbanization, vegetation, and surface-depression storage capacity were used as inputs to the Precipitation-Runoff Modeling System to simulate projected impacts on hydrologic response. Surface runoff substantially increased when land cover change was applied. However, once the surface depression storage was added to mitigate the land cover change and increases...
1) Raw parcel-level habitat data for the South Carolina Lowcountry surrounding Cape Romain NWR and Francis Marion NF, from current current conditions and for three projected sea-level rise futures based on SLAMM model outputs, NLCD land cover and the projected distribution of sea levels for 2050. 2) a table of parcel identification numbers (without georeference) with parcel size (Ha) and sub-group identity. 3) Optimization-model derived reserve design portfolios that define the Pareto-optimal frontier for each sub-group and for four budget scenarios along axes of reserve design benefits and risk.
Abstract: A significant number of historically existing wetlands that naturally stored rainwater and attenuated flood peaks have now been drained and employed as new farming areas. Beyond the water quality and flow problem, this has resulted in loss of natural habitats of diverse ecological species. Restoring wetlands have hence been proposed as a potential conservation strategy to help attenuate many of these problems. In this study a spatial, multi-objective optimization study of new potential wetlands was carried out to achieve biodiversity improvements in addition to flood reduction benefits and water quality improvements. The Soil and Water Assessment Tool (SWAT) was used to simulate flow and water quality,...


map background search result map search result map New soil data collection: subplot-level shear strength New porewater data collection: subplot-level physicochemical New soil data collection: subplot-level shear strength New porewater data collection: subplot-level physicochemical