Skip to main content
Advanced Search

Filters: Tags: {"scheme":"https://www.sciencebase.gov/vocab/category/WRET/CMS_Topics/CDI_CMS_Topics","name":"data release"} (X) > Categories: Project (X)

Folder: ROOT ( Show direct descendants )

22 results (62ms)   

Location

Folder
ROOT
View Results as: JSON ATOM CSV
thumbnail
The U.S. network of 160 weather radars known as NEXRAD (NEXt generation RADar) is one of the largest and most comprehensive terrestrial sensor networks in the world. To date, the National Climatic Data Center (NCDC) has archived about 2 petabytes data from this system. Although designed for meteorological applications, these radars readily detect the movements of birds, bats, and insects. Many of these movements are continental in scope, spanning the entire range of the network. It is unclear whether biological or meteorological data comprise the bulk of the archive. Regardless, the biological portion is sufficiently large that it likely represents one of the largest biological data archives in the world, perhaps...
thumbnail
Note 9/22/18: The Adopt a Pixel concept has been incorporated into NASA's Globe Observer App (Land Cover Tool). Find out more and download the app at https://observer.globe.gov/. *** Adopt a Pixel-Data Infrastructure (AaP-DI) provides the basis for a new data acquisition system for ground reference data. These data will be used to complement existing and future remote sensing collections by providing geospatiallytagged ground-based landscape imagery and landcover of an exact location from 6 different viewing aspects. The goal is for AaP-DI to enable citizen participation in Landsat science. Principal Investigator : Ryan Longhenry, Eric C Wood Cooperator/Partner : Jeannie Allen, Virginia Butcher, Rachel Headley,...
thumbnail
Geotagged photographs have become a useful medium for recording, analyzing, and communicating Earth science phenomena. Despite their utility, many field photographs are not published or preserved in a spatial or accessible format—oftentimes because of confusion about photograph metadata, a lack of stability, or user customization in free photo sharing platforms. After receiving a request to release about 1,210 geotagged geological field photographs of the Grand Canyon region, we set out to publish and preserve the collection in the most robust (and expedient) manner possible (fig. 6). We leveraged and reworked existing metadata, JavaScript, and Python tools and developed a toolkit and proposed workflow to display...
Detailed information about past fire history is critical for understanding fire impacts and risk, as well as prioritizing conservation and fire management actions. Yet, fire history information is neither consistently nor routinely tracked by many agencies and states, especially on private lands in the Southeast. Remote sensing data products offer opportunities to do so but require additional processing to condense and facilitate their use by land managers. Here, we propose to generate fire history metrics from the Landsat Burned Area Products for the southeastern US. We will develop code for a processing pipeline that utilizes USGS high-performance computing resources, evaluate Amazon cloud computing services,...
thumbnail
Land-use researchers need the ability to rapidly compare multiple land-use scenarios over a range of spatial and temporal scales, and to visualize spatial and nonspatial data; however, land-use datasets are often distributed in the form of large tabular files and spatial files. These formats are not ideal for the way land-use researchers interact with and share these datasets. The size of these land-use datasets can quickly balloon in size. For example, land-use simulations for the Pacific Northwest, at 1-kilometer resolution, across 20 Monte Carlo realizations, can produce over 17,000 tabular and spatial outputs. A more robust management strategy is to store scenario-based, land-use datasets within a generalized...
thumbnail
This project will assess the accuracy of climate drivers (precipitation and temperature) from different sources for current and future conditions. The impact of these drivers on hydrologic response will be using the monthly water balance model (MWBM). The methodology for processing and analysis of these datasets will be automated for when new climate datasets become available on the USGS Geo Data Portal (http://cida.usgs.gov/climate/gdp/ - content no longer available). This will ensure continued relevancy of project results, future opportunities for research and assessment of potential climate change impacts on hydrologic resources, and comparison between generations of climate data. To share and distribute the...
thumbnail
Sinkholes present hazards to humans due to subsidence and by focusing contaminated surface water runoff into groundwater. Sinkholes create instability in the foundations of buildings, roads and other infrastructure, resulting in damage and in some cases loss of life, but may also play an important role as vernal pools in some ecosystems. This project created a prototype nationwide subsidence susceptibility map using established USGS research, existing USGS authoritative data (National Elevation Dataset, National Hydrography Dataset), and innovative processing techniques using the USGS Yeti supercomputer. By creating both a national polygon dataset of closed features and a heatmap of regions characterized by dense...
thumbnail
Access to up-to-date geospatial data is critical when responding to natural hazards-related crises, such as volcanic eruptions. To address the need to reliably provide access to near real-time USGS datasets, we developed a process to allow data managers within the USGS Volcano Hazard Program to programmatically publish geospatial webservices to a cloud-based instance of GeoServer hosted on Amazon Web Services (AWS), using ScienceBase. To accomplish this, we developed a new process in the ScienceBase application, added new functionality to the ScienceBase Python library (sciencebasepy), and assembled a functioning Python workflow demonstrating how users can gather data from a web API and publish these data as a cloud-based...
thumbnail
The purpose of this project was to integrate the Bat Banding Program data (1932-1972) and the U.S. and Canada diagnostic data for white-nose syndrome with the USGS Bat Population Data (BPD) Project and provide the bat research community with secure, role-based access to these previously unavailable datasets. The objectives of this project were to: 1) integrate WNS diagnostic data into the BPD (http://my.usgs.gov/bpd - content no longer available); 2) incorporate the historical bat banding data produced by the Bat Banding Program into the BPD; and, 3) develop the application programming interfaces (APIs) and data services required to share these datasets with DOI and USGS enterprise data resources, BISON and Sciencebase....
Wildfires are increasing across the western U.S., causing damage to ecosystems and communities. Addressing the fire problem requires understanding the trends and drivers of fire, yet most fire data is limited only to recent decades. Tree-ring fire scars provide fire records spanning 300-500 years, yet these data are largely inaccessible to potential users. Our project will deliver the newly compiled North American Fire Scar Network — 2,592 sites, 35,602 trees, and > 300,000 fire records — to fire scientists, managers and the public through an online application that will provide tools to explore, visualize, and analyze fire history data. The app will provide raw and derived data products, graphics, statistical summaries,...
Scientists who study coastal ecosystems and hazards such as hurricanes, flooding, and cliff failure collect lots of photographs of coastal environments from airplanes and drones. A large area can be surveyed at high resolution and low cost. Additionally, satellites such as Landsat have provided imagery of the Nation’s coastlines every few days for decades. Scientist’s ability to understand coastal hazards would be greatly improved if this wealth of imagery could be ‘mined’ automatically by computers. We want to automate the process of identifying and labelling each region of the image from a set of categories (e.g. bare land, water, woody vegetation, herbaceous vegetation). We need to train a computer to recognize...
thumbnail
Legacy data (n) - Information stored in an old or obsolete format or computer system that is, therefore, difficult to access or process. (Business Dictionary, 2016) For over 135 years, the U.S. Geological Survey has collected diverse information about the natural world and how it interacts with society. Much of this legacy information is one-of-a-kind and in danger of being lost forever through decay of materials, obsolete technology, or staff changes. Several laws and orders require federal agencies to preserve and provide the public access to federally collected scientific information. The information is to be archived in a manner that allows others to examine the materials for new information or interpretations....
thumbnail
The proposed work will create a seamless pilot dataset of continuous basin characteristics (for example upstream average precipitation, elevation, or dominant land cover type) for the conterminous United States. Basin characteristic data are necessary for training or parameterizing statistical, machine learning, and physical models, and for making predictions across the landscape, particularly in areas where there are no observations. The pilot dataset will be accessible to the public via an interactive map and Web-based query service. The pilot dataset, USGS software used to produce it, and a publication on the processing methods will be generated. This work represents a substantial addition to USGS data services...
thumbnail
USGS research in the Western Geographic Science Center has produced several geospatial datasets estimating the time required to evacuate on foot from a Cascadia subduction zone earthquake-generated tsunami in the U.S. Pacific Northwest. These data, created as a result of research performed under the Risk and Vulnerability to Natural Hazards project, are useful for emergency managers and community planners but are not in the best format to serve their needs. This project explored options for formatting and publishing the data for consumption by external partner agencies and the general public. The project team chose ScienceBase as the publishing platform, both for its ability to convert spatial data into web services...
thumbnail
People in the locality of earthquakes are publishing anecdotal information about the shaking within seconds of their occurrences via social network technologies, such as Twitter. In contrast, depending on the size and location of the earthquake, scientific alerts can take between two to twenty minutes to publish. The goals of this project are to assess earthquake damage and effects information, as impacts unfold, by leveraging expeditious, free and ubiquitous social-media data to enhance our response to earthquake damage and effects. Principal Investigator : Michelle Guy, Paul S Earle Cooperator/Partner : Scott R Horvath, Douglas Bausch, Gregory M Smoczyk The project leverages an existing system that performs...
The USGS maintains an extensive monitoring network throughout the United States in order to protect the public and help manage natural resources. This network generates millions of data points each year, all of which must be evaluated and reviewed manually for quality assurance and control. Sensor malfunctions and issues can result in data losses and unexpected costs, and are typically only noticed after they occur during manual data checks. By connecting internal USGS databases to “always-on” artificial-intelligence applications, we can constantly scan data-streams for issues and predict problems before they occur. By connecting these algorithms to other cloud-hosted services, the system can automatically notify...
thumbnail
Understanding and anticipating change in dynamic Earth systems is vital for societal adaptation and welfare. USGS possesses the multidisciplinary capabilities to anticipate Earth systems change, yet our work is often bound within a single discipline and/or Mission Area. The proposed work breaks new ground in moving USGS towards an interdisciplinary predictive modeling framework. We are initially leveraging three research elements that cross the Land Resources and Water Mission Areas in an attempt to “close the loop” in modeling interactions among water, land use, and climate. Using the Delaware River Basin as a proof-of-concept, we are modeling 1) historical and future landscapes (~1850 to 2100), 2) evapotranspiration...
thumbnail
As one of the largest and oldest science organizations in the world, USGS has produced more than a century of earth science data, much of which is currently unavailable to the greater scientific community due to inaccessible or obsolescent media, formats, and technology. Tapping this vast wealth of “dark data” requires 1) a complete inventory of legacy data and 2) methods and tools to effectively evaluate, prioritize, and preserve the data with the greatest potential impact to society. Recognizing these truths and the potential value of legacy data, USGS has been investigating legacy data management and preservation since 2006, including the 2016 “DaR” project, which developed legacy data inventory and evaluation...
thumbnail
Prior to this project, data acquired from the USGS Unmanned Aircraft Systems (UAS) have been provided to requesting scientists but have not been made available to the broader USGS community, the U.S. Department of the Interior (DOI) bureaus, or the public at large. This project performed a pilot study and developed a strategy that is scalable to evolve into a permanent UAS data management capability. The goal is to make UAS datasets available over the Internet to the USGS, DOI, and public science communities by establishing robust data management strategies and integrating these data with other geospatial datasets in the existing infrastructure located at the USGS EROS Data Center. Principal Investigator : Jennifer...
To make informed decisions, land managers require knowledge about the state of the ecosystems present. Vegetation structure is a key indicator of the state of forested systems; it influences habitat suitability, water quality and runoff, microclimate, and informs wildfire-related characteristics such as fuel loads, burn severity, and post-fire regeneration. Field data used to derive vegetation structure are limited in spatial and temporal extent. Alternatively, forest growth simulation models estimate vegetation structure, but do not capture all factors influencing vegetation growth. Assessment of vegetation structure can be improved by using observations to derive maps which can be used to calibrate modeled forest...


map background search result map search result map Developing a USGS Legacy Data Inventory to Preserve and Release Historical USGS Data USGS Data at Risk: Expanding Legacy Data Inventory and Preservation Strategies Developing a USGS Legacy Data Inventory to Preserve and Release Historical USGS Data