Skip to main content
USGS - science for a changing world
Advanced Search

Filters: Tags: {"type":"CMS Status"} (X)

326 results (224ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Schemes
Tags (with Type=CMS Status )
View Results as: JSON ATOM CSV
thumbnail
Shale gas is a key source of onshore domestic energy for the United States and production of this resource is increasing rapidly. Development and extraction of shale gas requires hydraulic fracturing, which entails horizontal drilling, perforation of steel casing and cement grout using explosive charges, and expansion of fractures using fluids under high pressure. Concern over potential environmental effects of shale gas development is growing and based on a recent review there is very little information in the scientific literature on potential environmental effects of hydraulic fracturing. We propose to conduct the first broad scale, data-based assessment of the potential effects of hydraulic fracturing on water...
thumbnail
It is well know that every earthquake can spawn others (e.g., as aftershocks), and that such triggered events can be large and damaging, as recently demonstrated by L’Aquila, Italy and Christchurch, New Zealand earthquakes. In spite of being an explicit USGS strategic-action priority (http://pubs.usgs.gov/of/2012/1088; page 32), the USGS currently lacks an automated system with which to forecast such events and official protocols for disseminating the potential implications. This capability, known as Operational Earthquake Forecasting (OEF), could provide valuable situational awareness to emergency managers, the public, and other entities interested in preparing for potentially damaging earthquakes. With the various...
thumbnail
Tropical forests contain > 50% of the world’s known species (Heywood 1995), 55% of global forest biomass (Pan et al. 2011), and exchange more carbon (C), water and energy with the atmosphere than any other ecosystem type (e.g., Saugier et al. 2001). Despite their importance, there is more uncertainty associated with predictions of how tropical forests will respond to warming than for any other biome (Randerson et al. 2009). This uncertainty is of global concern due to the large quantity of C cycled by these forests and the high potential for biodiversity loss. Given the importance of tropical forests, decision makers and land managers around the globe need increased predictive capacity regarding how tropical forests...
thumbnail
There has been increasing attention placed on the need for water availability information at ungauged locations, particularly related to balancing human and ecological needs for water. Critical to assessing water availability is the necessity for daily streamflow time series; however, most of the rivers in the United States are ungauged. This proposal leverages over $1M currently allocated to the USGS National Water Census Program towards developing an integrated modeling approach to estimate daily streamflow at ungauged locations, with the ultimate goal of providing daily streamflow estimates at 160,000 ungauged catchments across the United States. By assembling a diverse and prolific group of international scientists,...
thumbnail
Latest item Update: 2018-10-05 We're trying to verify the length that SB-CMS is trimming titles to. See '[Browse] Category' tag to determine which 1 of the 4 SB-CMS supported content types being tested. Length should be max=250 for all 4 content types. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nunc mollis enim ut lacinia rutrum. Praesent pulvinar est lorem, a accumsan tortor sodales eu. Aliquam eget tellus bibendum, aliquam lorem non, scelerisque odio. Aliquam at risus nibh. Curabitur massa magna, facilisis sit amet sem sollicitudin, ornare pharetra velit. Aliquam sollicitudin, tortor vel vehicula faucibus, ante turpis scelerisque tellus, sit amet facilisis elit erat eu dolor. Mauris at quam mi....
thumbnail
Title IV has been successful in reducing emissions of SO2 and NOx from power generation to the levels set by Congress. In fact, by 2009, SO2 emissions from power plants were already 3.25 million tons lower than the final 2010 cap level of 8.95 million tons, and NOx emissions were 6.1 million tons less than the projected level in 2000 without the ARP, or more than triple the Title IV NOx emission-reduction objective. As a result of these emission reductions, air quality has improved, providing significant human health benefits, and acid deposition has decreased to the extent that some acid-sensitive areas are beginning to show signs of recovery. Current emission reductions and the passage of time, which is needed...
thumbnail
Problem The Village of Dryden, rural homeowners, farms, and businesses in the Virgil Creek Valley tap several confined sand and gravel aquifers in the Virgil Creek valley in the town of Dryden . The valley contains a large moraine with complex stratigraphy consisting of continuous and discontinuous layers of till, lake deposits, and glaciofluvial sand and gravel. Sand and gravel units form the aquifers in the valley-fill deposits. There are at least three extensive confined aquifer units at various depths. However, little is known about (1) the location of recharge and discharge areas, (2) direction of groundwater flow, (3) extent of hydraulic connection between aquifer units, and (4) extent of surface- and ground-water...
thumbnail
Advancing our mechanistic understanding of ecosystem responses to climate change is critical to improve ecological theories, develop predictive models to simulate ecosystem processes, and inform sound policies to manage ecosystems and human activities. Manipulation of temperature in the field, or the “ecosystem warming experiment,” has proved to be a powerful tool to understand ecosystem responses to changes in temperature. No comprehensive synthesis has been conducted since the last one more than 10 years ago. A new synthetic analysis is critically needed to advance our understanding of ecosystem responses to warming, to highlight experimental artifacts and appropriate interpretations, and to guide development...
thumbnail
Hawaiian shorelines and near-shore waters have long been used for cultural activities, food gathering and fishing, and recreation. As seascapes are physically altered by changing climate, the ways in which people experience these environments will likely change as well. Local perspectives of how seascapes are changing over time can help managers better understand and manage these areas for both natural persistence and human use. For this project, researchers conducted interviews and surveys of surfers and other ocean users to gather observations and perceptions of change over time at Hilo Bay, Hawaiʻi. They combined these results with historical data on public beach use and biophysical data from monitoring buoys...
thumbnail
Scientists, planners, policy makers and other decision-makers in the South Central U.S. want to understand the potential impacts of changes in climate, precipitation, and land-use patterns on natural and cultural resources. Though the potential impacts of climate change can be modeled to help decision-makers plan for future conditions, these models rarely incorporate changes in land-use that may occur. Climate change and land-use change are often linked, as shifts in precipitation and temperature can alter patterns in human land-use activities, such as agriculture. This project seeks to address this gap by developing new software tools that enable stakeholders to quickly develop custom, climate-sensitive land-use...
thumbnail
Throughout its native range in the Eastern U.S., the brook trout is a culturally and economically important species that is sensitive to warming stream temperatures and habitat degradation. The purpose of this assessment was to determine the impacts that projected future land use and climate changes might have on the condition of stream habitat to support self-sustaining brook trout populations. The study region encompassed the historic native range of brook trout, which includes the northeastern states and follows the Appalachian Mountains south to Georgia, where the distribution is limited to higher elevation streams with suitable water temperatures. Relationships between recent observations of brook trout and...
thumbnail
Determining which species, habitats, or ecosystems are most vulnerable to climate change enables resource managers to better set priorities for conservation action. To address the need for information on vulnerability, this research project will leverage the expertise of university partners to inform the North Central Climate Science Center on how to best assess the vulnerability of elements of biodiversity to climate and land use change in order to inform the development and implementation of management options. Outcomes from this activity will include 1) a framework for modeling vegetation type and species response to climate and land use change, 2) an evaluation of existing alternative vegetation and species...
thumbnail
Federal land managers need an adaptive management framework to accommodate changing conditions and that allows them to effectively link the appropriate science to natural resource management decision-making across jurisdictional boundaries. FRAME-SIMPPLLE is a collaborative modeling process designed to accomplish this goal by coupling the adaptive capabilities of the SIMPPLLE modeling system with accepted principles of collaboration. The two essential components of the process are FRAME (Framing Research in support of the Adaptive Management of Ecosystems), which creates a collaborative problem-solving environment, and SIMPPLLE (SIMulating Patterns and Processes at Landscape Scales), which is a vegetation dynamics...
thumbnail
The rugged landscapes of northern Idaho and western Montana support biodiverse ecosystems, and provide a variety of natural resources and services for human communities. However, the benefits provided by these ecosystems may be at risk as changing climate magnifies existing stressors and allows new stressors to emerge. Preparation for and response to these potential changes can be most effectively addressed through multi-stakeholder partnerships, evaluating vulnerability of important resources to climate change, and developing response and preparation strategies for managing key natural resources in a changing world. This project will support climate-smart conservation and management across forests of northern Idaho...
thumbnail
The Integrated Scenarios of the Future Northwest Environment project (an FY2012 NW CSC funded project), resulted in several datasets describing projected changes in climate, hydrology and vegetation for the 21st century over the Northwestern US. The raw data is available in netCDF format, which is a standard data file format for weather forecasting/climate change/GIS applications. However, the sheer size of these datasets and the specific file format (netCDF) for data access pose significant barriers to data access for many users. This is a particular challenge for many natural/cultural resource managers and others working on conservation efforts in the Pacific Northwest. The goal of this project was to increase...
thumbnail
Inland fish populations are a crucial resource to humans and communities around the world. Recreational fishing throughout the United States, for example, provides important revenue to local and state economies; globally, inland fisheries are a vital food source for billions of people. Warming temperatures and changing precipitation patterns, however, are already causing significant changes to fish communities worldwide. Since the mid-1980s, scientists have projected the effects of climate change on inland fish, and in more recent years, documentation of impacts has increased. However, the number of documented impacts of climate change on inland fish remains low. A comprehensive understanding of how climate change...
thumbnail
The threat of droughts and their associated impacts on the landscape and human communities has long been recognized in the United States, especially in high risk areas such as the South Central region. There is ample literature on the effects of long-term climate change and short-term climate variability on the occurrence of droughts. However, it is unclear whether this information meets the needs of relevant stakeholders and actually contributes to reducing the vulnerability or increasing the resilience of communities to droughts. For example, are the methods used to characterize the severity of drought – known as drought indices – effective tools for predicting the actual damage felt by communities? As droughts...
thumbnail
The beaches of the Hawaiian Islands attract nearly 9 million visitors each year, who inject around $15.6 billion into the state’s economy and support almost 200,000 jobs. Beyond their economic importance, Hawaiian beaches are also culturally and ecologically valuable. However, climate change driven sea-level rise is causing many beaches to disappear, endangering property, infrastructure, and critical habitats. The goal of this project was to develop a method for forecasting erosion-vulnerable beach areas that could be used in coastal management planning. Researchers focused on the island of Kauaʻi, modeling beach response to rising sea level over the next century and producing maps that provide information about...
thumbnail
As the impacts of climate change amplify, understanding the consequences for wetlands will be critical for their sustainable management and conservation, particularly in arid regions such as the Columbia Plateau. The depressional wetlands in this region (wetlands located in topographic depressions where water can accumulate) are an important source of surface water during the summer months. However, their health depends directly on precipitation and evaporation, making them susceptible to changes in temperature and precipitation. Yet few tools for monitoring water movement patterns (hydrology) in and out of these landscapes currently exist, hindering efforts to model how they are changing. This project provided...
thumbnail
The USGS National Climate Change and Wildlife Science Center (NCCWSC), as part of the work of the Interagency Land Management Adaptation Group (ILMAG), initiated a project in 2013 to develop plans for a searchable, public registry on climate change vulnerability assessments. Member agencies from the USGCRP Adaptation Science Work Group, the Association of Fish and Wildlife Agencies (AFWA), and several NGO’s also contributed. Vulnerability assessments are important for identifying resources that are most likely to be affected by climate change and providing insights on why certain resources are vulnerable. Consequently, they provide valuable information for informing climate change adaptation planning. CRAVe allows...


map background search result map search result map Using a Collaborative Modeling Approach to Explore Climate and Landscape Change in the Northern Rockies and Inform Adaptive Management Assessing the Vulnerability of Vegetation to Future Climate in the North Central U.S. Projected Vulnerability of Brook Trout to Climate and Land Use Changes in the Eastern U.S. (Regional Assessment) Community Resilience to Drought Hazard: An Analysis of Drought Exposure, Impacts, and Adaptation in the South Central U.S. Development of the Climate Registry for the Assessment of Vulnerability (CRAVe): A Searchable, Public Online Tool for Understanding Species and Habitat Vulnerability Moving from Awareness to Action: Informing Climate Change Vulnerability Assessments and Adaptation Planning for Idaho and Montana National Forests Forecasting Beach Loss from Sea-Level Rise on the Island of Kauaʻi Changing Hawaiian Seascapes and Their Management Implications National Acid Precipitation Assessment Program Report to Congress 2011: An Integrated Assessment Integrated Scenarios Tools: Improving the Accessibility of the Integrated Scenarios Data Can We Conserve Wetlands Under a Changing Climate? Mapping Wetland Hydrology in the Columbia Plateau Hydrogeology of the Virgil Creek Valley in the Town of Dryden, Tompkins County, New York Global Analysis of Trends in Projected and Documented Effects of Climate Change on Inland Fish Building a Decision-Support Tool for Assessing the Impacts of Climate and Land Use  Change on Ecological Processes 250-PRJ Hydrogeology of the Virgil Creek Valley in the Town of Dryden, Tompkins County, New York Forecasting Beach Loss from Sea-Level Rise on the Island of Kauaʻi Changing Hawaiian Seascapes and Their Management Implications Moving from Awareness to Action: Informing Climate Change Vulnerability Assessments and Adaptation Planning for Idaho and Montana National Forests Can We Conserve Wetlands Under a Changing Climate? Mapping Wetland Hydrology in the Columbia Plateau Integrated Scenarios Tools: Improving the Accessibility of the Integrated Scenarios Data Community Resilience to Drought Hazard: An Analysis of Drought Exposure, Impacts, and Adaptation in the South Central U.S. Building a Decision-Support Tool for Assessing the Impacts of Climate and Land Use  Change on Ecological Processes Projected Vulnerability of Brook Trout to Climate and Land Use Changes in the Eastern U.S. (Regional Assessment) Using a Collaborative Modeling Approach to Explore Climate and Landscape Change in the Northern Rockies and Inform Adaptive Management Assessing the Vulnerability of Vegetation to Future Climate in the North Central U.S. 250-PRJ Development of the Climate Registry for the Assessment of Vulnerability (CRAVe): A Searchable, Public Online Tool for Understanding Species and Habitat Vulnerability National Acid Precipitation Assessment Program Report to Congress 2011: An Integrated Assessment Global Analysis of Trends in Projected and Documented Effects of Climate Change on Inland Fish