Skip to main content
Advanced Search

Filters: Tags: {"type":"CMS Themes"} (X) > Extensions: Budget (X)

318 results (45ms)   

View Results as: JSON ATOM CSV
thumbnail
Landscape-scale conservation of threatened and endangered species is often challenged by multiple, sometimes conflicting, land uses. In Hawaiʻi, efforts to conserve native forests have come into conflict with objectives to sustain non-native game mammals, such as feral pigs, goats, and deer, for subsistence and sport hunting. Maintaining stable or increasing game populations represents one of the greatest obstacles to the recovery of Hawaii’s 425 threatened and endangered plant species. Many endemic Hawaiian species have declined and become endangered as a result of herbivorous non-native game mammals. Meanwhile, other environmental changes, including the spread of invasive grasses and changing precipitation patterns...
thumbnail
Hawaiʻi is considered a worldwide biodiversity hotspot, with nearly 90 percent of its native plants found nowhere else in the world. However, about half of these native plants are imperiled by threats including human development, non-native species, and climate change. Through this project, scientists modeled the relative vulnerability of over 1,000 native plant species to the effects of climate change. A panel of experts in Hawaiian plant species assisted with the development of the model and verified its results. From the model, researchers were able to develop a vulnerability score for each plant species and identify categories of species with high, medium, and low vulnerability to climate change. This information...
thumbnail
Cheatgrass began invading the Great Basin about 100 years ago, changing large parts of the landscape from a rich, diverse ecosystem to one where a single invasive species dominates. Cheatgrass dominated areas experience more fires that burn more land than in native ecosystems, resulting in economic and resource losses. Therefore, the reduced production, or absence, of cheatgrass in previously invaded areas during years of adequate precipitation could be seen as a windfall. However, this cheatgrass dieoff phenomenon creates other problems for land managers like accelerated soil erosion, loss of early spring food supply for livestock and wildlife, and unknown recovery pathways. We used satellite data and scientific...
thumbnail
In southwestern Colorado, land managers anticipate the impacts of climate change to include higher temperatures, more frequent and prolonged drought, accelerated snowmelt, larger and more intense fires, more extreme storms, and the spread of invasive species. These changes put livelihoods, ecosystems, and species at risk. Focusing on communities in southwestern Colorado’s San Juan and Gunnison river basins, this project will expand opportunities for scientists, land managers, and affected residents to identify actions that can support resilience and adaptation in the face of changing climate conditions. This project builds on the project “Building Social and Ecological Resilience to Climate Change in southwestern...
thumbnail
One of the biggest challenges facing resource managers today is not knowing exactly when, where, or how climate change effects will unfold. To help federal land managers address this need, the North Central CASC has been working with the National Park Service to pioneer an approach for incorporating climate science and scenario planning into NPS planning processes, in particular Resource Stewardship Strategies (RSS). These strategies serve as a long-range planning tool for a national park unit to achieve its desired natural and cultural resource conditions, and are used to guide a park’s full spectrum of resource-specific management plans and day-to-day management activities. To support adaptation planning within...
thumbnail
The 2017 fire season in California was highly unusual with its late seasonal timing, the areal extent it burned, and its devastation to communities. These fires were associated with extreme winds and were potentially also influenced by unusually dry conditions during several years leading up to the 2017 events. This fire season brought additional attention and emphasized the vital need for managers in the western U.S. to have access to scientific information on when and where to expect dangerous fire events. Understanding the multiple factors that cause extreme wildfire events is critical to short and long-term forecasting and planning. Seasonal climate measures such as temperature and precipitation are commonly...
thumbnail
Streamflow in the Colorado River is heavily influenced by high-elevation snowpack. Warming temperatures in spring can reduce snow-fed flows, with serious implications for the water supplies that support communities and wildlife. While it is already well-known that precipitation has a significant influence on river flow, recent observations suggest that temperature and the amount of water in soil may also influence streamflow. In the face of a changing climate, it is important that resource managers understand how factors such as changing temperatures and precipitation will affect this vital water source. To address this need, researchers are examining records of streamflow, temperature, soil moisture, and precipitation...
thumbnail
A limited amount of valid scientific information about global climate change and its detrimental impacts has reached the public and exerted a positive impact on the public policy process or future planning for adaptation and mitigation. This project was designed to address this limitation by bringing together expertise in the social and communication sciences from targeted academic institutions affiliated with the Department of the Interior’s Climate Science Centers (CSCs) through a workshop. The project team brought together expertise in the social and communication sciences from targeted academic institutions, particularly experts and scholars who are affiliated with the nation’s CSCs, by means of an invited...
thumbnail
The Northwest Climate Conference (formerly called the Pacific Northwest Climate Science Conference) is the premier climate science event for the region, providing a forum for researchers and practitioners to share scientific results and discuss challenges and solutions related to the impacts of climate change on people, natural resources, and infrastructure in the Northwest. Conference participants include policy- and decision-makers, resource managers, and scientists from academia, public agencies, sovereign tribal nations, non-governmental organizations, and the private sector. More information can be found at the conference website: http://pnwclimateconference.org. The Seventh Annual Northwest Climate Conference...
thumbnail
The goal of this project was to inform implementation of the Greater Yellowstone Coordinating Committee (GYCC) Whitebark Pine (WBP) subcommittee’s “WBP Strategy” based on climate science and ecological forecasting. Project objectives were to: 1. Forecast ecosystem processes and WBP habitat suitability across the Greater Yellowstone Area (GYA) under alternative IPCC future scenarios; 2. Improve understanding of possible response to future climate by analyzing WBP/climate relationships in past millennia; 3. Develop WBP management alternatives; 4. Evaluate the alternatives under IPCC future scenarios in terms of WBP goals, ecosystem services, and costs of implementation; and 5. Draw recommendations for implementation...
thumbnail
Resource managers, policymakers, and scientists require tools to inform water resource management and planning. Information on hydrologic factors – such as streamflow, snowpack, and soil moisture – is important for understanding and predicting wildfire risk, flood activity, and agricultural and rangeland productivity, among others. Existing tools for modeling hydrologic conditions rely on information on temperature and precipitation. This project sought to evaluate different methods for downscaling global climate models – that is, taking information produced at a global scale and making it useable at a regional scale, in order to produce more accurate projections of temperature and precipitation for the Pacific...
thumbnail
Northeastern boreal forests are an important habitat type for many wildlife species, including migratory birds and moose. These animals play vital roles in the boreal forest ecosystem, are a source of pleasure for bird and wildlife watchers, and contribute to tourism revenue for many communities. However, moose and migratory birds are thought to be particularly vulnerable to the impacts of climate change. For example, in New York’s Adirondack Park system, five species of boreal birds have shown occupancy declines of 15% or more. Meanwhile, moose are threatened by winter ticks that thrive in warmer climates and spread disease. A 2018 New York Department of Environmental Conservation (NYDEC) report found that there...
thumbnail
Changing climate conditions such as increasing droughts, floods, and wildfires, hotter temperatures, declining snowpacks, and changes in the timing of seasonal events are already having an impact on wildlife and their habitats. In order to make forward-looking management decisions that consider ongoing and future projected changes in climate, managers require access to climate information that can be easily integrated into the planning process. Co-production, a process whereby scientists work closely with managers to identify and fill knowledge gaps, is an effective means of ensuring that science results will be directly useful to managers. Through a multi-phase project, researchers are implementing co-production...
thumbnail
Researchers with the North Central Climate Science Center have made substantial progress in assessing the impacts of climate and land use change on wildlife and ecosystems across the region. Building on this progress, researchers will work with stakeholders to identify adaptation strategies and inform resource management in the areas that will be most affected by changing conditions. There are several components of this project. First, researchers will use the Department of Interior “resource briefs” as a mechanism to communicate information to resource managers on climate and land use change and their impacts to resources. These briefs will support coordinated management of ecosystems that contain public, private,...
thumbnail
Drought and wildfire pose enormous threats to the integrity of natural resources that land managers are charged with protecting. Recent observations and modeling forecasts indicate that these stressors will likely produce catastrophic ecosystem transformations, or abrupt changes in the condition of plants, wildlife, and their habitats, in regions across the country in coming decades. In this project, researchers will bring together land managers who have experienced various degrees of ecosystem transformation (from not yet experiencing any changes to seeing large changes across the lands they manage) to share their perspectives on how to mitigate large-scale changes in land condition. The team will conduct surveys...
thumbnail
Hawaiian shorelines and near-shore waters have long been used for cultural activities, food gathering and fishing, and recreation. As seascapes are physically altered by changing climate, the ways in which people experience these environments will likely change as well. Local perspectives of how seascapes are changing over time can help managers better understand and manage these areas for both natural persistence and human use. For this project, researchers conducted interviews and surveys of surfers and other ocean users to gather observations and perceptions of change over time at Hilo Bay, Hawaiʻi. They combined these results with historical data on public beach use and biophysical data from monitoring buoys...
thumbnail
Forests are of tremendous ecological and economic importance. They provide natural places for recreation, clean drinking water, and important habitats for fish and wildlife. However, the warmer temperatures and harsher droughts in the west that are related to climate change are causing die-offs of many trees. Outbreaks of insects, like the mountain pine beetle, that kill trees are also more likely in warmer, drier conditions. To maintain healthy and functioning forest ecosystems, one action forest managers can take is to make management decisions that will help forests adapt to future climate change. However, adaptation is a process based on genetic change and few tools are currently available for managers to use...
thumbnail
Road crossings at rivers and streams can create barriers to the movement of migratory fish when they are improperly designed or constructed. Washington State is home to several threatened species of salmon and trout, including bull trout, and recovery plans for these fish include repairing or replacing culverts that currently block their passage. The state is currently looking to replace approximately 1,000 culverts at an estimated cost of $2.45 billion. As engineers re-design these culverts, which typically have a service life of 50-100 years, it will be important to consider how changing climate conditions will impact streams in the region. Climate change is projected to increase peak streamflows, and therefore...
thumbnail
The Integrated Scenarios of the Future Northwest Environment project (an FY2012 NW CSC funded project), resulted in several datasets describing projected changes in climate, hydrology and vegetation for the 21st century over the Northwestern US. The raw data is available in netCDF format, which is a standard data file format for weather forecasting/climate change/GIS applications. However, the sheer size of these datasets and the specific file format (netCDF) for data access pose significant barriers to data access for many users. This is a particular challenge for many natural/cultural resource managers and others working on conservation efforts in the Pacific Northwest. The goal of this project was to increase...
thumbnail
The rugged landscapes of northern Idaho and western Montana support biodiverse ecosystems, and provide a variety of natural resources and services for human communities. However, the benefits provided by these ecosystems may be at risk as changing climate magnifies existing stressors and allows new stressors to emerge. Preparation for and response to these potential changes can be most effectively addressed through multi-stakeholder partnerships, evaluating vulnerability of important resources to climate change, and developing response and preparation strategies for managing key natural resources in a changing world. This project supports climate-smart conservation and management across forests of northern Idaho...


map background search result map search result map Modeling Effects of Climate Change on Cheatgrass Die-Off Areas in the Northern Great Basin Improving Projections of Hydrology in the Pacific Northwest Building Capacity within the CSC Network to Effectively Deliver and Communicate Science to Resource Managers and Planners Establishing Climate Change Vulnerability Rankings for Hawaiian Native Plants Science and Forecasting to Inform Implementation of the Greater Yellowstone Coordinating Committee’s Whitebark Pine Management Strategy Examining the Influence of Temperature and Precipitation on Colorado River Water Resources: Reconstructing the Past to Understand the Future Moving from Awareness to Action: Informing Climate Change Vulnerability Assessments and Adaptation Planning for Idaho and Montana National Forests Changing Hawaiian Seascapes and Their Management Implications Integrated Scenarios Tools: Improving the Accessibility of the Integrated Scenarios Data Using Genetic Information to Understand Drought Tolerance and Bark Beetle Resistance in Whitebark Pine Forests Support for the Seventh Annual Northwest Climate Conference Integrating Climate Change Research and Planning to Inform Wildlife Conservation in the Boreal Forests of the Northeastern U.S. Building Social and Ecological Resilience to Climate Change in Southwestern Colorado: Phase 2 Foundational Science Area: Climate Adaptation Strategies for Wildlife and Habitats in the North Central U.S. Enabling Climate-Informed Planning and Decisions about Species of Conservation Concern in the North Central Region: Phase 2 Supporting Climate-Resilient Design for In-Stream Restoration and Fish Passage Projects Preventing Extreme Fire Events by Learning from History: The Effects of Wind, Temperature, and Drought Extremes on Fire Activity Managing Non-native Game Mammals to Reduce Future Conflicts with Native Plant Conservation in Hawai‘i Refining Guidance for Incorporating Climate Science and Scenario Planning into National Park Service Resource Stewardship Strategies Learning From the Past and Planning for the Future: Experience-Driven Insight Into Managing for Ecosystem Transformations Induced by Drought and Wildfire Refining Guidance for Incorporating Climate Science and Scenario Planning into National Park Service Resource Stewardship Strategies Using Genetic Information to Understand Drought Tolerance and Bark Beetle Resistance in Whitebark Pine Forests Managing Non-native Game Mammals to Reduce Future Conflicts with Native Plant Conservation in Hawai‘i Changing Hawaiian Seascapes and Their Management Implications Integrating Climate Change Research and Planning to Inform Wildlife Conservation in the Boreal Forests of the Northeastern U.S. Building Social and Ecological Resilience to Climate Change in Southwestern Colorado: Phase 2 Modeling Effects of Climate Change on Cheatgrass Die-Off Areas in the Northern Great Basin Establishing Climate Change Vulnerability Rankings for Hawaiian Native Plants Moving from Awareness to Action: Informing Climate Change Vulnerability Assessments and Adaptation Planning for Idaho and Montana National Forests Supporting Climate-Resilient Design for In-Stream Restoration and Fish Passage Projects Examining the Influence of Temperature and Precipitation on Colorado River Water Resources: Reconstructing the Past to Understand the Future Integrated Scenarios Tools: Improving the Accessibility of the Integrated Scenarios Data Support for the Seventh Annual Northwest Climate Conference Preventing Extreme Fire Events by Learning from History: The Effects of Wind, Temperature, and Drought Extremes on Fire Activity Learning From the Past and Planning for the Future: Experience-Driven Insight Into Managing for Ecosystem Transformations Induced by Drought and Wildfire Improving Projections of Hydrology in the Pacific Northwest Building Capacity within the CSC Network to Effectively Deliver and Communicate Science to Resource Managers and Planners Enabling Climate-Informed Planning and Decisions about Species of Conservation Concern in the North Central Region: Phase 2 Foundational Science Area: Climate Adaptation Strategies for Wildlife and Habitats in the North Central U.S. Science and Forecasting to Inform Implementation of the Greater Yellowstone Coordinating Committee’s Whitebark Pine Management Strategy