Skip to main content
Advanced Search

Filters: Tags: {"type":"CMS WRET Topics"} (X) > partyWithName: John Wesley Powell Center for Earth System Analysis and Synthesis (X)

15 results (41ms)   

View Results as: JSON ATOM CSV
thumbnail
Global hydroclimatic conditions have been significantly altered, over the past century, by anthropogenic influences that arise from warming global climate and also from local/regional anthropogenic disturbances. There has been never been an effort that has systematically analyzed how the spatio-temporal variability of land-surface fluxes vary in natural and human-altered watersheds globally. This synthesis study will adapt and extend the classical Budyko framework to quantify the role of drivers - changing climate and local human disturbances - in altering flow regimes and in creating urban heat island episodes over the globe. An allied goal is to develop parsimonious hydroclimatic models that explain the spatio-temporal...
thumbnail
Understanding invasive plant impacts can provide insight into community assembly and inform the development of successful management strategies. The impacts of invasive species depend on how they alter patterns of abundance within recipient communities and on the characteristics of the invaders and the affected species. Research has suggested that common species may be more impacted by invasions, and that similarity between native and invasive species underlies impact. To assess large-scale patterns of invasive plant impact, we are bringing together plant community data from 75,000 plots across natural areas of the U.S. with information on plant functional traits and evolutionary history. Functional traits are characteristics...
thumbnail
Sea-level rise and storms cause major changes on coastal landscapes, including shifts in elevation, ecosystem type (for example, dunes and tidal wetlands), soils, and plant communities. Because these changes can have impacts on human communities, the local economy, and ecosystems, understanding how, when, and why these changes occur can be important for informing policy and natural resource management decisions. However, much is still unknown in our understanding of and ability to forecast coastal landscape change, and many current modeling approaches do not include important feedbacks between the physical landscape and the species inhabiting it. Examples of these types of feedbacks include the rapid development...
Wind energy is poised for rapid growth over the next 2-3 decades yet fatalities to birds and bats is a leading concern that may constrain wind energy development in the US. This working group will integrate wind energy forecasting models with bat ecological models and management policy considerations to transform our ability to understand and manage renewable energy development while minimizing unintended consequences to wildlife and habitat. The key activities include: 1. Simulate tiered wind energy deployment constraints representing impact mitigation to assess effects to both species’ habitat and wind energy development; 2. integrate wind energy forecast simulations and bat demographic models to elucidate the...
thumbnail
Despite the proven efficacy of geothermal energy as a city-scale heating and cooling resource, the relative newness of most city-scale applications using diverse technologies has resulted in limited widespread adoption. We aim to develop authoritative information suitable for city-managers and other decision-makers. Geothermal resources are ubiquitous and diverse, with technologies available both for harvesting ambient heat or for storing thermal energy. These local low-carbon, baseload energy sources provide resilience, security, and jobs. The project team proposes to accelerate understanding and possibly energy-solution adoption by developing an international systematic nomenclature to describe the range of...
thumbnail
River ecosystems support a wide diversity of biota, including thousands of fish species, which are variously adapted to the dynamic environments provided by flowing-water habitats. One of the primary ways that human activities diminish the biological capacity of rivers is by altering the natural hydrologic variability of river systems through regulation and diversion of streamflow for other uses. Managers may be able to avoid some of the worst effects of flow management on aquatic biota if we understand the mechanisms by which streamflow components, such as unusually high and low flow events, affect populations (e.g., by influencing recruitment and mortality). Numerous past studies have described correlative associations...
thumbnail
A revolution is underway in seismology that transforms fiber-optic cables into arrays of thousands of seismic sensors. Compared to the traditional monitoring networks using inertial seismometers, the fiber-optic approach can increase the spatial data density by orders of magnitude and enable data processing methodologies that require a high-fidelity wavefield. The Working Group aims to advance the USGS, along with several academic and industry partners, towards effective utilization of fiber-optic sensing techniques to understand earthquake hazards and improve monitoring and real-time warning systems. We will conduct synthesis studies that demonstrate the potential gains for various applications, including earthquake...
thumbnail
Natural resource managers are coping with rapid changes in both environmental conditions and ecosystems. Enabled by recent advances in data collection and assimilation, short-term ecological forecasting may be a powerful tool to help resource managers anticipate impending changes in ecosystem dynamics (that is, the approaching near-term changes in ecosystems). Managers may use the information in forecasts to minimize the adverse effects of ecological stressors and optimize the effectiveness of management actions. To explore the potential for ecological forecasting to enhance natural resource management, the U.S. Geological Survey (USGS) convened a workshop titled “Building capacity for Applied Short-Term Ecological...
thumbnail
Ecosystem services - the benefits that nature provides to society and the economy - are gaining increasing traction worldwide as governments and the private sector use them to monitor integrated environmental and economic trends. When they are well understood and managed, ecosystems can provide these long-term benefits to people - such as clean air and water, flood control, crop pollination, and recreational, cultural, and aesthetic benefits. Within the U.S. government, a memo issued by the White House Council on Environmental Quality in October 2015 charged agencies with incorporating these values in planning, investment, and regulatory processes. Natural capital accounting - a tool being used in dozens of countries...
thumbnail
The pervasive nature of insect species’ declines has led to the specter of an “Insect Armageddon” in the popular press. Insect-derived ecosystem services are valued at > $57 billion in the U.S. and thus the loss of insects has the potential to fundamentally disrupt natural and economic systems.The causes of insect declines have been linked to changes in climate, land use and pesticide use, but there is little consensus on the relative importance of these drivers. There is even less consensus about which species are at most risk and about how to mitigate declines and recover populations. Systematic evaluations of trends across insect taxa in North America are needed as there are none based on systematic monitoring...
thumbnail
The three-dimensional (3D) form of the Earth’s surface results from both abiotic and biotic forces. Major abiotic forces, such as tectonic uplift, erosion, and climate, exert strong influence over land surface morphology. Biotic forces, including, significantly, humans, also shape the landscape, but often at different temporal and spatial scales and magnitudes than geologic forces. Because the processes shaping the land surface, as expressed in its topography, are ongoing, topographic change is ever present and is a factor that must be broadly considered in studies of natural and built environments. Remote sensing data, especially in the form of derived high-resolution measurements of the topography, have been widely...
thumbnail
Terrestrial evapotranspiration (ET), the second-largest component of the terrestrial water cycle, links water, energy, and carbon cycles and influences the productivity and health of our ecosystems. Despite the importance of ET, the dynamics of ET across a spectrum of spatiotemporal scale and their controls are uncertain. During an international ET workshop held in November 2021 by AmeriFlux, the scientific community identified key challenges to improve our understanding of ET dynamics. Participants underscored the need for an integrated understanding of ET across the different research disciplines: in-situ measurements, remote sensing, and modeling. Here, we propose the synthesis of the three research areas to...
thumbnail
Subsurface preferential flow (PF = water bypassing the soil matrix) provides rapid flowpaths for water and any substances transported with it, thereby profoundly impacting the recharge of aquifers, the spreading of contaminants, the health of the soil, and the functioning of ecosystems. It involves a complexity of processes that are poorly understood to the degree that current science provides no reliable way to predict its occurrence and magnitude. This effort will address the fundamental question of where and when PF occurs, taking advantage of two recent scientific developments: availability of high frequency (at least every 30 minutes), multi-depth soil moisture data suitable to detect preferential flow events...
thumbnail
Fluid circulation in the Earth’s crust plays an essential role in surface, near surface, and crustal dynamics. Near the surface, soil water and groundwater interact with each other and with rivers, lakes and wetlands, affecting weathering, soil formation, ecosystem evolution and biogeochemical cycles. Further down (1km), fluid flow affects diagenesis, hydrocarbon maturation and migration, ore deposits, faulting and earthquakes, and geothermal resources. The myriad flow pathways are driven by hydraulic gradients but controlled by the permeability of the crust material. To date, a large‐scale dataset of crustal permeability does not exist, inhibiting the understanding of large‐scale processes and the integration of...
thumbnail
Our ability to effectively manage natural resources is founded in an understanding of how our actions and the environment influence populations, communities, and ecosystems. Current practices use monitoring data from the past to determine key ecological relationships and make predictions about the future with the assumption that those relationships will remain constant. However, many natural systems are undergoing rapid changes due to external factors including climate change, urbanization, and energy development, leading to a situation in which our observations of the past are poor predictors of the future. Ignoring such changes could lead to management decisions that are sub-optimal at best or detrimental at worst....