Skip to main content
Advanced Search

Filters: Tags: {"type":"Community"} (X)

1,716 results (22ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Schemes
Tags (with Type=Community )
View Results as: JSON ATOM CSV
thumbnail
Natural and cultural resource managers across the country have begun to use a tool known as "scenario planning" to help prepare for climate change effects that may unfold in the future. In this process, scientific projections are used to identify different plausible, relevant, and divergent climate conditions for a particular area, and then through a participatory process, scientists and resource managers develop "scenarios" which describe the implications of these different conditions for resources and management. The North Central CASC has been working with the National Park Service (NPS) Climate Change Response Program (CCRP) to encourage and support national parks in incorporating climate science and scenario...
thumbnail
The NC CASC works to communicate the science conducted at the center out to the North Central region through a variety of communication resources such as state specific fact sheets, newsletters, social media and webinars. These communication products aim to connect researchers, managers, and practitioners to usable science, success stories, and solutions for natural and cultural resource management and adaptation under a changing climate. More specifically, the webinar series focuses on ongoing research and practices from the NC CASC network, and feature topics of critical importance to natural resource managers and other stakeholders within the region. To learn more about NC CASC communications, please visit the...
thumbnail
With joint funding from the North Central Climate Science Center (NC CSC) and NASA's Earth Science Applied Sciences Program, the NC CSC supports resource managers and their decision process through its Resource for Vulnerability Assessment, Adaptation and Mitigation Planning (ReVAMP), a collaborative research/planning effort supported by high performance computing and modeling resources. The NC CSC focuses primarily on climate data as input to the ReVAMP. In this project the NASA DEVELOP program was used to evaluate how remote sensing data sets can contribute to the ecological response models that are implemented in the ReVAMP system. This work demonstrates the utility of remote sensing in vulnerability assessment...
thumbnail
Federal land managers need an adaptive management framework to accommodate changing conditions and that allows them to effectively link the appropriate science to natural resource management decision-making across jurisdictional boundaries. FRAME-SIMPPLLE is a collaborative modeling process designed to accomplish this goal by coupling the adaptive capabilities of the SIMPPLLE modeling system with accepted principles of collaboration. The two essential components of the process are FRAME (Framing Research in support of the Adaptive Management of Ecosystems), which creates a collaborative problem-solving environment, and SIMPPLLE (SIMulating Patterns and Processes at Landscape Scales), which is a vegetation dynamics...
thumbnail
Future climate conditions in the Upper Mississippi River Basin are projected to include many more extreme precipitation events. These intense periods of rain can lead to flooding of the Mississippi River itself, as well the small streams and rivers that feed it. This flooding presents a challenge for local communities, farmers, small businesses, river users, and the ecosystems and wildlife in the area. To reduce the damage done by these extreme rainfall events, ‘natural solutions’ are often helpful. This might include preserving forests and grasslands to absorb rainwater before it arrives at streams or restoring wetlands to slow and clean runoff water. For river and natural resource managers to adapt to future climate...
thumbnail
The Midwest has experienced some of the costliest flooding events in U.S. history, including many billions of dollars during the past decade alone. The Midwest’s susceptibility to flooding has been exacerbated by a long-term increase in total precipitation and extreme rainfalls, with the 2010s being the region’s wettest decade on record Climate models strongly indicate that these recent trends will continue, such that the warming Midwest will experience wetter winters and springs, shortened snow seasons, and extreme year-round precipitation in the future. Despite this high level of confidence in climate trends, there is limited knowledge of how these will translate to flood likelihood and the associated societal...
thumbnail
The 2017 fire season in California was highly unusual with its late seasonal timing, the areal extent it burned, and its devastation to communities. These fires were associated with extreme winds and were potentially also influenced by unusually dry conditions during several years leading up to the 2017 events. This fire season brought additional attention and emphasized the vital need for managers in the western U.S. to have access to scientific information on when and where to expect dangerous fire events. Understanding the multiple factors that cause extreme wildfire events is critical to short and long-term forecasting and planning. Seasonal climate measures such as temperature and precipitation are commonly...
thumbnail
Streamflow in the Colorado River is heavily influenced by high-elevation snowpack. Warming temperatures in spring can reduce snow-fed flows, with serious implications for the water supplies that support communities and wildlife. While it is already well-known that precipitation has a significant influence on river flow, recent observations suggest that temperature and the amount of water in soil may also influence streamflow. In the face of a changing climate, it is important that resource managers understand how factors such as changing temperatures and precipitation will affect this vital water source. To address this need, researchers are examining records of streamflow, temperature, soil moisture, and precipitation...
thumbnail
Scientists, planners, policy makers and other decision-makers in the South Central U.S. want to understand the potential impacts of changes in climate, precipitation, and land-use patterns on natural and cultural resources. Though the potential impacts of climate change can be modeled to help decision-makers plan for future conditions, these models rarely incorporate changes in land-use that may occur. Climate change and land-use change are often linked, as shifts in precipitation and temperature can alter patterns in human land-use activities, such as agriculture. This project sought to address this gap by developing new software tools that enable stakeholders to quickly develop custom, climate-sensitive land-use...
thumbnail
Pollinator restoration requires information about what species to plant and when to plant them to ensure food sources are available throughout the periods when pollinators are active. Changes in climate, including earlier spring warming and warmer fall temperatures, may cause flowering to become out of sync with pollinator activity. When restoring land to support pollinators, managers are challenged to select a mix of species that support pollinators of concern throughout their periods of activity. Existing planting tools have several disadvantages such as, their usability is location specific, they are virtually non-existent for the South Central region, and they do not often account for future changes in plant...
thumbnail
In the Western U.S., approximately 65% of the water supply comes from forested regions with most of the water that feeds local rivers coming from snowmelt that originates in mountain forests. The Rio Grande headwaters (I.e. the primary water generating region of the Rio Grande river) is experiencing large changes to the landscape primarily from forest fires and bark beetle infestations. Already, 85% of the coniferous forests in this region have been affected by the bark beetle, and projections indicate greater changes will occur as temperatures increase. In this area, most of the precipitation falls as snow in the winter, reaches a maximum depth in the late spring, and melts away due to warmer temperatures by early...
thumbnail
Wildfire, drought, and insects are reshaping forests in the Western United States in a manner that is being exacerbated by warming temperatures. Disturbance events such as these can significantly alter the amount of land that is covered by forest in an area or region. Consequently, changes in forest cover from disturbance can impact water runoff conditions leading to dangerous flooding, erosion, and water quality issues. These events can be costly for society. In response, many land managers are using forest thinning and prescribed burning practices to reduce disturbance impacts, especially those that are caused by high-severity wildfire. In contrast to the wealth of research on the advantages of forest thinning...
thumbnail
The South Central Climate Adaptation Science Center (CASC) has several Communities of Practice (CoPs) focused on resource manager needs across the region (e.g. understanding at-risk species and ecosystems, building resilient coastal ecosystems, extreme weather and climate change, etc.). Each CoP has expertise in the subject matter and has been working on projects that are relevant to the resource community, including conducting literature reviews and small-scale pilot projects. The current research project will leverage the expertise of the existing CoPs to enhance the content available through the Conservation and Adaptation Resources Toolbox (CART) as identified through the partnership between the South Central...
thumbnail
Drought is a common consequence of climate variability in the south-central U.S., but they are expected to occur more often and become more intense with climate change. Natural resource managers can improve their planning efforts with advance warnings of impending drought. Using input from resource managers in the Chickasaw Nation, this research team previously created models that forecast droughts up to 18 months in advance with information about their expected timing and intensity. Developed for all climate divisions in Louisiana, New Mexico, Oklahoma, and Texas, these drought models rely on input from predictor variables associated with global weather patterns like El Niño and La Niña. However, it is unclear...
thumbnail
The New York Water Science Center of the U.S. Geological Survey (USGS) in Troy, N.Y., operates a state-of-the-science laboratory for the chemical analysis of soil and water. For over 20 years, the laboratory has specialized in analyses used in acid rain research and other environmental studies such as soil effects on forest health and logging effects on water quality. Laboratory Information: Contact the Lab for customized schedules and fees. phone: (518) 285-5681 Water Soils Ammonium ...
thumbnail
Summary The U. S. Geological Survey (USGS) will conduct simulations using existing aquifer data, including geologic logs from vertical profile borings (VPBs) and well installations, water levels, and pump test data available from the water districts for these production wells. Subsequently USGS will incorporate data from a groundwater pump test and additional data from new VPBs and monitoring wells. Using particle tracking maps, USGS will illustrate the spatial configuration of the capture zone and percentage of capture of the shallow and deep plumes in each production well. The model area will be limited to achieve these objectives and make maximum use of available sampling locations in the region. USGS will...
thumbnail
Introduction Detailed mapping of the glacial aquifer within the buried Fairport-Lyons bedrock channel in southern Wayne County, N.Y. is the latest study in the cooperative Detailed Aquifer Mapping Program between the U.S. Geological Survey (USGS) and the New York State Department of Environmental Conservation (NYSDEC). The aim of the program is to map the extent of glacial aquifers in New York State at a scale of 1:24,000. This information is used by NYSDEC Division of Water and others for delineation of groundwater contributing areas, assessing potential threats to aquifers from both point and non-point sources of pollution, responding to contamination from spills or leaks from underground storage facilities,...
thumbnail
PROBLEM The valley‐fill aquifer in the lower Fall Creek valley (designated as aquifer 4, fig. 1), within the Towns of Dryden and Groton, was mapped by Miller (2000) and identified as one of 17 unconsolidated aquifers in Tompkins County that need to be studied in more detail. The east end of the valley (near the Tompkins and Cortland County border) is on the backside of a large morainal plug, which is part of the Valley Heads Moraine. A large system of springs discharge from the backside of the moraine and forms part of the headwaters to Fall Creek. The valley‐fill aquifer thins and pinches out to the west (figs. 1 and 2)— where the valley is floored by bedrock and becomes a “hanging valley” to Cayuga Lake trough....
thumbnail
Background and Problem Prattsville has experienced severe flooding along the Schoharie Creek, most notably during August 2011 following Hurricane Irene, which severely damaged or destroyed large areas of the town, and caused several million dollars in damages (Figure 1). Before and during a flood, forewarning and emergency response are critical. The rescue efforts of emergency responders are often hampered by lack of an understanding of where flooding is occurring at any given moment, but also where flooding is likely to occur in the near future. Emergency responders would benefit from a library of flood-inundation maps that are referenced to the stages recorded at the U.S. Geological Survey (USGS) streamgage in...
thumbnail
Introduction Detailed mapping of the valley-fill aquifer within the Susquehanna River valley and adjacent tributary valleys in south-central Broome County (Towns of Conklin and Kirkwood) is the latest study in the cooperative Detailed Aquifer Mapping Program between the US Geological Survey (USGS) and the New York State Department of Environmental Conservation (NYSDEC). The aim of the program is to map sand and gravel aquifers in New York State at a scale of 1:24,000. This information is used by NYSDEC Division of Water and others to delineate groundwater contributing areas, assess potential threats to aquifers from both point and non-point sources, respond to contamination from spills or leaks from underground...


map background search result map search result map Using a Collaborative Modeling Approach to Explore Climate and Landscape Change in the Northern Rockies and Inform Adaptive Management Regional Short- and Long-term Climate Impacts on Northern Rocky Mountain and Great Plains Ecosystems Examining the Influence of Temperature and Precipitation on Colorado River Water Resources: Reconstructing the Past to Understand the Future Soil and Low-Ionic-Strength Water Quality Laboratory Detailed Aquifer Mapping in Wayne County, New York, The Fairport-Lyons Channel Aquifer Flood-Inundation Maps for the Schoharie Creek at Prattsville, New York Simulation of Zones of Groundwater Contribution to Three Well Fields Southwest Portion of the Naval Weapons Industrial Reserve Plant, Bethpage, New York Detailed Aquifer Mapping in the Susquehanna River Valley  in South-Central Broome County –Towns of Conklin and Kirkwood Building a Decision-Support Tool for Assessing the Impacts of Climate and Land Use  Change on Ecological Processes Preventing Extreme Fire Events by Learning from History: The Effects of Wind, Temperature, and Drought Extremes on Fire Activity Supporting the National Park Service in Climate Adaptation Planning Estimating the Future Effects of Forest Disturbance on Snow Water Resources in a Changing Environment Time to Restore: Using a Community Based Approach to Identify Key Plant Species for Pollinator Restoration Developing Products to Increase Climate Science Communication Geohydrology of the Valley‐fill Aquifer in the Lower Fall Creek Valley, Town of Dryden, Tompkins County, New York Workshop: Natural Solutions to Ecological and Economic Problems Caused by Extreme Precipitation Events in the Upper Mississippi River Basin The Combined Effects of Seasonal Climate and Extreme Precipitation on Flood Hazard in the Midwest The Role of Forest Structure in Regulating Water Availability and Implications for Natural Resources and Ecosystem Function Expanding the Conservation and Adaptation Resources Toolbox (CART) to the South Central United States Improving Predictive Drought Models with Sensitivity Analysis Flood-Inundation Maps for the Schoharie Creek at Prattsville, New York Simulation of Zones of Groundwater Contribution to Three Well Fields Southwest Portion of the Naval Weapons Industrial Reserve Plant, Bethpage, New York Geohydrology of the Valley‐fill Aquifer in the Lower Fall Creek Valley, Town of Dryden, Tompkins County, New York Detailed Aquifer Mapping in Wayne County, New York, The Fairport-Lyons Channel Aquifer Estimating the Future Effects of Forest Disturbance on Snow Water Resources in a Changing Environment Improving Predictive Drought Models with Sensitivity Analysis Soil and Low-Ionic-Strength Water Quality Laboratory Examining the Influence of Temperature and Precipitation on Colorado River Water Resources: Reconstructing the Past to Understand the Future The Role of Forest Structure in Regulating Water Availability and Implications for Natural Resources and Ecosystem Function Preventing Extreme Fire Events by Learning from History: The Effects of Wind, Temperature, and Drought Extremes on Fire Activity Workshop: Natural Solutions to Ecological and Economic Problems Caused by Extreme Precipitation Events in the Upper Mississippi River Basin The Combined Effects of Seasonal Climate and Extreme Precipitation on Flood Hazard in the Midwest Building a Decision-Support Tool for Assessing the Impacts of Climate and Land Use  Change on Ecological Processes Time to Restore: Using a Community Based Approach to Identify Key Plant Species for Pollinator Restoration Expanding the Conservation and Adaptation Resources Toolbox (CART) to the South Central United States Using a Collaborative Modeling Approach to Explore Climate and Landscape Change in the Northern Rockies and Inform Adaptive Management Regional Short- and Long-term Climate Impacts on Northern Rocky Mountain and Great Plains Ecosystems Supporting the National Park Service in Climate Adaptation Planning Developing Products to Increase Climate Science Communication