Skip to main content
Advanced Search

Filters: Tags: {"type":"Keyword"} (X)

350 results (26ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Schemes
Tags (with Type=Keyword )
View Results as: JSON ATOM CSV
thumbnail
Determining which species, habitats, or ecosystems are most vulnerable to climate change enables resource managers to better set priorities for conservation action. To address the need for information on vulnerability, this research project aimed to leverage the expertise of university partners to inform the North Central Climate Science Center on how to best assess the vulnerability of elements of biodiversity to climate and land use change in order to inform the development and implementation of management options. Outcomes from this activity were expected to include 1) a framework for modeling vegetation type and species response to climate and land use change, 2) an evaluation of existing alternative vegetation...
thumbnail
Covering 120 million acres across 14 western states and 3 Canadian provinces, sagebrush provides critical habitat for species such as pronghorn, mule deer, and sage-grouse – a species of conservation concern. The future of these and other species is closely tied to the future of sagebrush. Yet this important ecosystem has already been affected by fire, invasive species, land use conversion, and now, climate change. In the western U.S., temperatures are rising and precipitation patterns are changing. However, there is currently a limited ability to anticipate the impacts of climate change on sagebrush. Current methods suffer from a range of weakness that limits the reliability of results. In fact, the current uncertainty...
thumbnail
The rugged landscapes of northern Idaho and western Montana support biodiverse ecosystems, and provide a variety of natural resources and services for human communities. However, the benefits provided by these ecosystems may be at risk as changing climate magnifies existing stressors and allows new stressors to emerge. Preparation for and response to these potential changes can be most effectively addressed through multi-stakeholder partnerships, evaluating vulnerability of important resources to climate change, and developing response and preparation strategies for managing key natural resources in a changing world. This project supports climate-smart conservation and management across forests of northern Idaho...
thumbnail
The Jago, Okpilak, and Hulahula rivers in the Arctic are heavily glaciated waterways that are important for fish and wildlife as well as human activities including the provision of food, recreation, and, potentially, resource extraction on the coastal plain. If current glacial melting trends continue, most of the ice in these rivers will disappear in the next 50-100 years. Because of their importance to human and natural communities, it is critical to understand how these rivers and their surrounding environments will be affected by climate change and glacier loss. The overarching goal of this project was to research (1) the amount of river water, sediment, nutrients, and organic matter in the Jago, Okpilak, and...
thumbnail
Coastal wetlands and the many beneficial services they provide (e.g., purifying water, buffering storm surge, providing habitat) are changing and disappearing as a result of sea-level rise brought about by climate change. Scientists have developed a wealth of information and resources to predict and aid decision-making related to sea-level rise. However, while some of these resources are easily accessible by coastal managers, many others require more expert knowledge to understand or utilize. The goal of this project was to collate science and models pertaining to the effects of sea-level on coastal wetlands into a format that would be accessible and useful to resource managers. Researchers conducted training sessions...
thumbnail
Assessing the impact of flow alteration on aquatic ecosystems has been identified as a critical area of research nationally and in the Southeast U.S. This project aimed to address the Ecohydrology Priority Science Need of the SE CSC FY2012 Annual Science Work Plan by developing an inventory and evaluation of current efforts and knowledge gaps in hydrological modeling for flow-­â€ecology science in global change impact studies across the Southeast. To accomplish this goal, we completed a thorough synthesis and evaluation of hydrologic modeling efforts in the Southeast region (including all states of the Southeastern Association of Fish and Wildlife Agencies (SEAFWA) including Alabama, Arkansas, Florida, Georgia, Kentucky,...
thumbnail
Report on research that has shown that management of river connectivity of channels to floodplains is an effective mitigation strategy to remove nutrients, sediment, and carbon from river flows. The confluence of the Maquoketa and Mississippi Rivers is a unique site because: 1) the Maquoketa River carries some of the highest documented sediment and nutrient loads in the Upper Mississippi River (Garrett 2013, Robertson et al 2009); 2) the delta at the confluence with the Mississippi River is heavily managed by a State-Federai-NGO partnership and includes several Habitat Rehabilitation Projects designed to enhance fish and wildlife production and recreational access; 3) a recent nonreparable break in the levy near...
thumbnail
National Wildlife Refuges (NWRs) along the East Coast of the United States protect habitat for a host of wildlife species, while also offering storm surge protection, improving water quality, supporting nurseries for commercially important fish and shellfish, and providing recreation opportunities for coastal communities. Yet in the last century, coastal ecosystems in the eastern U.S. have been severely altered by human development activities as well as sea-level rise and more frequent extreme events related to climate change. These influences threaten the ability of NWRs to protect our nation’s natural resources and to sustain their many beneficial services. Through this project, researchers are collaborating with...
thumbnail
In the northern Gulf of Mexico, mangrove forests have been expanding their northern range limits in parts of Texas, Louisiana, and north Florida since 1989. In response to warming winter temperatures, mangroves, which are dominant in warmer climates, are expected to continue migrating northward at the expense of salt marshes, which fare better in cooler climates. The ecological implications and timing of mangrove expansion is not well understood, and coastal wetland managers need information and tools that will enable them to identify and forecast the ecological impacts of this shift from salt marsh to mangrove-dominated coastal ecosystems. To address this need, researchers will host workshops and leverage existing...
thumbnail
In Alaska, recent research has identified particular areas of the state where both a lack of soil moisture and warming temperatures increase the likelihood of wildfire. While this is an important finding, this previous research did not take into account the important role that melting snow, ice, and frozen ground (permafrost) play in replenshing soil moisture in the spring and summer months. This project will address this gap in the characterization of fire risk using the newly developed monthly water balance model (MWBM). The MWBM takes into account rain, snow, snowmelt, glacier ice melt, and the permafrost layer to better calculate soil moisture replenishment and the amount of moisture that is lost to the atmosphere...
thumbnail
The 2017 fire season in California was highly unusual with its late seasonal timing, the areal extent it burned, and its devastation to communities. These fires were associated with extreme winds and were potentially also influenced by unusually dry conditions during several years leading up to the 2017 events. This fire season brought additional attention and emphasized the vital need for managers in the western U.S. to have access to scientific information on when and where to expect dangerous fire events. Understanding the multiple factors that cause extreme wildfire events is critical to short and long-term forecasting and planning. Seasonal climate measures such as temperature and precipitation are commonly...
thumbnail
Federal land managers need an adaptive management framework to accommodate changing conditions and that allows them to effectively link the appropriate science to natural resource management decision-making across jurisdictional boundaries. FRAME-SIMPPLLE is a collaborative modeling process designed to accomplish this goal by coupling the adaptive capabilities of the SIMPPLLE modeling system with accepted principles of collaboration. The two essential components of the process are FRAME (Framing Research in support of the Adaptive Management of Ecosystems), which creates a collaborative problem-solving environment, and SIMPPLLE (SIMulating Patterns and Processes at Landscape Scales), which is a vegetation dynamics...
thumbnail
The Integrated Scenarios of the Future Northwest Environment project (an FY2012 NW CSC funded project), resulted in several datasets describing projected changes in climate, hydrology and vegetation for the 21st century over the Northwestern US. The raw data is available in netCDF format, which is a standard data file format for weather forecasting/climate change/GIS applications. However, the sheer size of these datasets and the specific file format (netCDF) for data access pose significant barriers to data access for many users. This is a particular challenge for many natural/cultural resource managers and others working on conservation efforts in the Pacific Northwest. The goal of this project was to increase...
thumbnail
As the impacts of climate change amplify, understanding the consequences for wetlands will be critical for their sustainable management and conservation, particularly in arid regions such as the Columbia Plateau. The depressional wetlands in this region (wetlands located in topographic depressions where water can accumulate) are an important source of surface water during the summer months. However, their health depends directly on precipitation and evaporation, making them susceptible to changes in temperature and precipitation. Yet few tools for monitoring water movement patterns (hydrology) in and out of these landscapes currently exist, hindering efforts to model how they are changing. This project provided...
thumbnail
Cheatgrass began invading the Great Basin about 100 years ago, changing large parts of the landscape from a rich, diverse ecosystem to one where a single invasive species dominates. Cheatgrass dominated areas experience more fires that burn more land than in native ecosystems, resulting in economic and resource losses. Therefore, the reduced production, or absence, of cheatgrass in previously invaded areas during years of adequate precipitation could be seen as a windfall. However, this cheatgrass dieoff phenomenon creates other problems for land managers like accelerated soil erosion, loss of early spring food supply for livestock and wildlife, and unknown recovery pathways. We used satellite data and scientific...


map background search result map search result map Modeling Effects of Climate Change on Cheatgrass Die-Off Areas in the Northern Great Basin Using a Collaborative Modeling Approach to Explore Climate and Landscape Change in the Northern Rockies and Inform Adaptive Management Evaluating the Use of Models for Projecting Future Water Flow in the Southeast A Handbook for Resource Managers to Understand and Utilize Sea-Level Rise and Coastal Wetland Models The Impacts of Glacier Change on the Jago, Okpilak, and Hulahula Rivers in the Arctic Assessing the Vulnerability of Vegetation to Future Climate in the North Central U.S. Creating a detailed vegetation classification and digital vegetation map for Squaw Creek NWR Moving from Awareness to Action: Informing Climate Change Vulnerability Assessments and Adaptation Planning for Idaho and Montana National Forests Forecasting Future Changes in Sagebrush Distribution and Abundance Climate Change Adaptation for Coastal National Wildlife Refuges Integrated Scenarios Tools: Improving the Accessibility of the Integrated Scenarios Data Can We Conserve Wetlands Under a Changing Climate? Mapping Wetland Hydrology in the Columbia Plateau Improving Characterizations of Future Wildfire Risk in Alaska Maquoketa River Floodplain Connectivity Research reports Preventing Extreme Fire Events by Learning from History: The Effects of Wind, Temperature, and Drought Extremes on Fire Activity Identifying the Ecological and Management Implications of Mangrove Migration in the Northern Gulf of Mexico Creating a detailed vegetation classification and digital vegetation map for Squaw Creek NWR Maquoketa River Floodplain Connectivity Research reports Climate Change Adaptation for Coastal National Wildlife Refuges Modeling Effects of Climate Change on Cheatgrass Die-Off Areas in the Northern Great Basin Moving from Awareness to Action: Informing Climate Change Vulnerability Assessments and Adaptation Planning for Idaho and Montana National Forests The Impacts of Glacier Change on the Jago, Okpilak, and Hulahula Rivers in the Arctic Can We Conserve Wetlands Under a Changing Climate? Mapping Wetland Hydrology in the Columbia Plateau Integrated Scenarios Tools: Improving the Accessibility of the Integrated Scenarios Data Preventing Extreme Fire Events by Learning from History: The Effects of Wind, Temperature, and Drought Extremes on Fire Activity Forecasting Future Changes in Sagebrush Distribution and Abundance Using a Collaborative Modeling Approach to Explore Climate and Landscape Change in the Northern Rockies and Inform Adaptive Management Identifying the Ecological and Management Implications of Mangrove Migration in the Northern Gulf of Mexico A Handbook for Resource Managers to Understand and Utilize Sea-Level Rise and Coastal Wetland Models Assessing the Vulnerability of Vegetation to Future Climate in the North Central U.S. Evaluating the Use of Models for Projecting Future Water Flow in the Southeast Improving Characterizations of Future Wildfire Risk in Alaska