Skip to main content
Advanced Search

Filters: Tags: {"type":"Label"} (X)

2,379 results (2.7s)   

Filters
Date Range
Extensions (Less)
Types (Less)
Contacts (Less)
Categories (Less)
Tag Schemes
Tags (with Type=Label )
View Results as: JSON ATOM CSV
thumbnail
Habitat fragmentation and flow regulation are significant factors related to the decline and extinction of freshwater biota. Pelagic-broadcast spawning cyprinids require moving water and some length of unfragmented stream to complete their life cycle. However, it is unknown how discharge and habitat features interact at multiple spatial scales to alter the transport of semi-buoyant fish eggs. Our objective was to assess the relationship between downstream drift of semi-buoyant egg surrogates (gellan beads) and discharge and habitat complexity. We quantified transport time of a known quantity of beads using 2–3 sampling devices at each of seven locations on the North Canadian and Canadian rivers. Transport time was...
thumbnail
Stream fragmentation alters the structure of aquatic communities on a global scale, generally through loss of native species. Among riverscapes in the Great Plains of North America, stream fragmentation and hydrologic alteration (flow regulation and dewatering) are implicated in the decline of native fish diversity. This study documents the spatio–temporal distribution of fish reproductive guilds in the fragmented Arkansas and Ninnescah rivers of south-central Kansas using retrospective analyses involving 63 years of fish community data. Pelagic-spawning fishes declined throughout the study area during 1950–2013, including Arkansas River shiner (Notropis girardi) last reported in 1983, plains minnow (Hybognathus...
Categories: Data, Publication; Types: Citation, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: CATFISHES/MINNOWS, Colorado, Colorado, FISH, Federal resource managers, All tags...
thumbnail
Sediment accumulation in playa wetlands, such as those in the Rainwater Basin in south-central Nebraska, reduces the hydrologic functionality and alters the vegetative composition of the wetlands reducing their ability to provide forage and resting habitat for migratory birds. Most Rainwater Basin wetlands have intense agricultural production occuring within their watersheds that accelerate sediment accumulation within the wetland. This sediment accumulation reduced the abilty of the wetland to hold water which, in turn, allows invasive and upland plants to proliferate with the wetland footprint. Planting upland grassland buffers around wetlands reduces the sediment load entering the wetland reducing the need...
thumbnail
We propose to use long-term fish-population data from a relict reach of the Pecos River, New Mexico to assess population dynamics of imperiled prairie-river minnows, including Arkansas River shiner. Development of viable management strategies requires basic understanding of population ecology. Rigorous, quantitative ecological methods can be used to analyze continuous, long-term demographic data, but such data are rarely available for imperiled, non-game fishes. Data available for the Pecos River provide a unique opportunity to apply quantitative methods to prairie-river minnow conservation and management. Analyses proposed here would determine (1) whether population regulation is density dependent or flow-regime...
thumbnail
Sport fisheries of lakes are embedded in complex system of ecological and social interactions. The multiple drivers that affect lake sport fisheries, along with the complex interactions within lakes, make it difficult to forecast changes in sport fisheries and plan adaptive responses to build resilience of these important resources. Resilience involves managing with an eye toward critical thresholds for behavior of ecosystems. Project researchers are working to develop quantitative tools for assessment of thresholds in sport fisheries that can be used by management agencies to evaluate potential impacts of climate change mediated through species and habitat interactions. Several outputs of the project will be adaptable...
thumbnail
Road crossings at rivers and streams can create barriers to the movement of migratory fish when they are improperly designed or constructed. Washington State is home to several threatened species of salmon and trout, including bull trout, and recovery plans for these fish include repairing or replacing culverts that currently block their passage. The state is currently looking to replace approximately 1,000 culverts at an estimated cost of $2.45 billion. As engineers re-design these culverts, which typically have a service life of 50-100 years, it will be important to consider how changing climate conditions will impact streams in the region. Climate change is projected to increase peak streamflows, and therefore...
thumbnail
A digital model of the sedimentary Northern Atlantic Coastal Plain aquifer system is composed of 20 rasters and hydrogeologic unit extent polygons. Rasters describe the top elevations of regional aquifers and confining units at a resolution of 2640 feet (1/2 mile). The rasters are clipped to the extent polygons, which represent the spatial extents of the hydrogeologic units onshore and several miles offshore. This three-dimensional hydrogeologic model was constructed as part of a U.S. Geological Survey Groundwater Resources Program study of groundwater availability in the Northern Atlantic Coastal Plain (NACP) aquifer system, including parts of New York, New Jersey, Delaware, Maryland, Virginia, and North Carolina....
thumbnail
There is growing evidence that headwater stream ecosystems are especially vulnerable to changing climate and land use, but managers are challenged by the need to address these threats at a landscape scale, often through coordination with multiple management agencies and landowners. This project sought to provide an example of cooperative landscape decision-making by addressing the conservation of headwater stream ecosystems in the face of climate change at the watershed scale. Predictive models were built for critical resources to examine the effects of the potential alternative actions on the objectives, taking account of climate effects and examining whether there are key uncertainties that impede decision making....
Abstract (from Wiley Online Library): Annual distributions of waterfowl during the nonbreeding period can influence ecological, cultural, and economic relationships. We used previously developed Weather Severity Indices (WSI) that explained migration by dabbling ducks in eastern North America and weather data from the North American Regional Reanalysis to develop an open-access internet-based tool (i.e., WSI web app) to visualize and query WSI data. We used data generated by the WSI web app to determine whether the weather known to elicit southerly migration by dabbling ducks had changed, from October to April 1979 to 2013. We detected that the amount of area in the Mississippi and Atlantic Flyways with weather...
thumbnail
This dataset provides the results of an assessment of estuary habitat condition in the conterminous United States. To analyze estuary condition, a cumulative disturbance index was developed based on habitat stressor variable data available at a national scale for anthropogenic disturbances measured within estuaries and their associated watersheds. Twenty-eight variables were combined within stressor categories to develop four sub-indices of disturbance for land use, alterations of river flows, pollution sources, and estuary eutrophication. These four sub-indices of disturbance were then combined to develop cumulative disturbance index scores for each estuary. This index describes the estimated combined stress on...
thumbnail
Coastal wetlands and the many beneficial services they provide (e.g., purifying water, buffering storm surge, providing habitat) are changing and disappearing as a result of sea-level rise brought about by climate change. Scientists have developed a wealth of information and resources to predict and aid decision-making related to sea-level rise. However, while some of these resources are easily accessible by coastal managers, many others require more expert knowledge to understand or utilize. The goal of this project was to collate science and models pertaining to the effects of sea-level on coastal wetlands into a format that would be accessible and useful to resource managers. Researchers conducted training sessions...
thumbnail
This is a collaborative, two-part project to compile and analyze resource data to support WLCI efforts. Part 1 entails directing data synthesis and assessment activities to ensure that they will inform and support the WLCI LPDTs and Coordination Team in their conservation planning efforts, such as developing conservation priorities and strategies, identifying priority areas for conservation actions, evaluating and ranking conservation projects, and evaluating spatial and ecological relations between proposed habitat projects and WLCI priorities. In FY2014, we helped the Coordination Team complete the WLCI Conservation Action Plan and BLM’s annual report, and we provided maps and other materials to assist with ranking...
thumbnail
Description of Work Benthos (benthic invertebrate) and plankton (phytoplankton/zooplankton) communities in Wisconsin's four Lake Michigan Areas of Concern (AOCs; Menominee River, Lower Green Bay and Fox River, Sheboygan River, and Milwaukee Estuary) and six non-AOCs will be quantified. The inclusion of non-AOC sites will allow comparison of AOC sites to relatively-unimpacted or less-impacted control sites with natural physical and chemical characteristics that are as close as possible to that of the AOCs. The community data within and between the AOCs and non-AOCs will be analyzed. This project is a cooperative agreement between the Wisconsin Department of Natural Resources (WDNR) and the US Geological Survey (USGS)....
thumbnail
Description of Work USGS will conduct seasonal sampling of benthic invertebrates, zooplankton, prey fish, and their diets to complement the seasonal lower trophic level sampling by EPA. A point of emphasis is describing the vertical distribution of planktivores and their zooplankton prey, to fill a knowledge gap on these predator/prey interactions. These data will provide a more holistic understanding of how invasive-driven, food-web changes could be altering energy available to sport fishes in the Great Lakes and used to build bioenergetics models that can evaluate whether zooplankton dynamics are being driven by limited resources or excessive predation. Understanding the key drivers of zooplankton will provide...
thumbnail
The USGS National Climate Change and Wildlife Science Center (NCCWSC), as part of the work of the Interagency Land Management Adaptation Group (ILMAG), initiated a project in 2013 to develop plans for a searchable, public registry on climate change vulnerability assessments. Member agencies from the USGCRP Adaptation Science Work Group, the Association of Fish and Wildlife Agencies (AFWA), and several NGO’s also contributed. Vulnerability assessments are important for identifying resources that are most likely to be affected by climate change and providing insights on why certain resources are vulnerable. Consequently, they provide valuable information for informing climate change adaptation planning. CRAVe allows...
thumbnail
Winter climate change has the potential to have a large impact on coastal wetlands in the southeastern U.S. Warmer winter temperatures and reductions in the intensity of freeze events would likely lead to mangrove forest range expansion and salt marsh displacement in parts of the U.S. Gulf of Mexico and Atlantic coast. The objective of this research was to better understand some of the ecological implications of mangrove forest migration and salt marsh displacement. The potential ecological effects of mangrove migration are diverse ranging from important biotic impacts (e.g., coastal fisheries, land bird migration; colonial nesting wading birds) to ecosystem stability (e.g., response to sea level rise and drought;...
thumbnail
Winter climate change has the potential to have a large impact on coastal wetlands in the southeastern U.S. Warmer winter temperatures and reductions in the intensity of freeze events would likely lead to mangrove forest range expansion and salt marsh displacement in parts of the U.S. Gulf of Mexico and Atlantic coast. The objective of this research was to better understand some of the ecological implications of mangrove forest migration and salt marsh displacement. The potential ecological effects of mangrove migration are diverse ranging from important biotic impacts (e.g., coastal fisheries, land bird migration; colonial nesting wading birds) to ecosystem stability (e.g., response to sea level rise and drought;...
thumbnail
Description of Work Initial tests of a variety of chemical stimuli identified a strong response to the algal food attractant. Field testing of chemical stimulants based on algae will seek to identify potent mixtures based on persistence and duration of attraction. These studies will include consideration of component chemicals such as amino acids produced by algae that enhance the attractiveness of the stimulus, based on carp smell and taste senses. Means of providing a sustained release of the stimulant will be explored through tests of various media. Tests will be conducted to confirm the possibility that carp can be conditioned to feeding stations that can be used to facilitate their capture. Relevance & Impact...
thumbnail
The goal of this project was to inform implementation of the Greater Yellowstone Coordinating Committee (GYCC) Whitebark Pine (WBP) subcommittee’s “WBP Strategy” based on climate science and ecological forecasting. Project objectives were to: 1. Forecast ecosystem processes and WBP habitat suitability across the Greater Yellowstone Area (GYA) under alternative IPCC future scenarios; 2. Improve understanding of possible response to future climate by analyzing WBP/climate relationships in past millennia; 3. Develop WBP management alternatives; 4. Evaluate the alternatives under IPCC future scenarios in terms of WBP goals, ecosystem services, and costs of implementation; and 5. Draw recommendations for implementation...
thumbnail
Changes in tidal marsh area and habitat type in response to sea-level rise were modeled using the Sea Level Affecting Marshes Model (SLAMM 6) that accounts for the dominant processes involved in wetland conversion and shoreline modifications during long-term sea level rise (Park et al. 1989; Successive versions of the model have been used to estimate the impacts of sea level rise on the coasts of the U.S. The model was produced by Warren Pinnacle Consulting, Inc. for the U.S. Fish and Wildlife Service. The SLAMM version 6 technical document can be accessed at http://warrenpinacle.com/prof/SLAMM. SLAMM outputs were converted from raster to vector features. Land cover (wetland) types were generalized to MesoHabitat...


map background search result map search result map Application of Comprehensive Assessment to Support Decisionmaking and Conservation Actions A Handbook for Resource Managers to Understand and Utilize Sea-Level Rise and Coastal Wetland Models Projecting the Future of Headwater Streams to inform Management Decisions Science and Forecasting to Inform Implementation of the Greater Yellowstone Coordinating Committee’s Whitebark Pine Management Strategy Population Management of Prairie-River Minnows Climate Change and Resilience of Sport Fisheries in Lakes Development of the Climate Registry for the Assessment of Vulnerability (CRAVe): A Searchable, Public Online Tool for Understanding Species and Habitat Vulnerability Cooperative Science and Monitoring Initiative (CSMI) - LAKE HURON Benthos & Plankton in Wisconsin's Lake Michigan AOCs New soil data collection: subplot-level shear strength New porewater data collection: subplot-level physicochemical Black Rail- Potential Habitat Under Sea Level Affecting Marshes Model (SLAMM) Conditions Interacting Effects of Discharge and Channel Morphology on Transport of Semibuoyant Fish Eggs in Large, Altered River Systems NFHP 2015 National Estuary Assessment Results RUSLE2 Soil Erosion Model for the Rainwater Basin Region of Nebraska Digital elevations and extents of regional hydrogeologic units in the Northern Atlantic Coastal Plain aquifer system Publication: Fragmentation and drying ratchet down Great Plains stream fish diversity Supporting Climate-Resilient Design for In-Stream Restoration and Fish Passage Projects Black Rail- Potential Habitat Under Sea Level Affecting Marshes Model (SLAMM) Conditions RUSLE2 Soil Erosion Model for the Rainwater Basin Region of Nebraska Application of Comprehensive Assessment to Support Decisionmaking and Conservation Actions Cooperative Science and Monitoring Initiative (CSMI) - LAKE HURON New soil data collection: subplot-level shear strength New porewater data collection: subplot-level physicochemical Population Management of Prairie-River Minnows Supporting Climate-Resilient Design for In-Stream Restoration and Fish Passage Projects Interacting Effects of Discharge and Channel Morphology on Transport of Semibuoyant Fish Eggs in Large, Altered River Systems Benthos & Plankton in Wisconsin's Lake Michigan AOCs Climate Change and Resilience of Sport Fisheries in Lakes Digital elevations and extents of regional hydrogeologic units in the Northern Atlantic Coastal Plain aquifer system Publication: Fragmentation and drying ratchet down Great Plains stream fish diversity A Handbook for Resource Managers to Understand and Utilize Sea-Level Rise and Coastal Wetland Models Projecting the Future of Headwater Streams to inform Management Decisions Science and Forecasting to Inform Implementation of the Greater Yellowstone Coordinating Committee’s Whitebark Pine Management Strategy NFHP 2015 National Estuary Assessment Results Development of the Climate Registry for the Assessment of Vulnerability (CRAVe): A Searchable, Public Online Tool for Understanding Species and Habitat Vulnerability