Skip to main content
Advanced Search

Filters: Tags: {"type":"Location"} (X) > partyWithName: LCC Network Data Steward (X)

199 results (27ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Schemes
Tags (with Type=Location )
View Results as: JSON ATOM CSV
thumbnail
Rainwater Harvesting and Stormwater Research is a priority research area identified by the Arizona Governor’s Blue Ribbon Panel on Water Sustainability, which recommended that universities take the lead to identify regulatory barriers, cost and benefits, water quality issues and avenues for increasing utilization of stormwater and rainwater at the regional, community and individual property level. In an effort to address the priority research area, the University of Arizona will develop a decision support tool to be used by public utilities and agencies to evaluate suitability and cost-effectiveness of rainwater and stormwater capture at various scales for multiple benefits. Data from the City of Tucson, Arizona...
thumbnail
Understanding the physiological impacts of climate change on arid lands species is a critical step towards ensuring the resilience and persistence of such species under changing temperature and moisture regimes. Varying degrees of vulnerability among different species will largely determine their future distributions in the face of climate change. Studies have indicated that Northern Mexico and the Southwestern United States are likely to become climate change hotspots, experiencing significantly drier and warmer average conditions by the end of the 21st century. However, relatively few studies have examined specifically the physiological effects of climate change on species inhabiting this region. This manuscript...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2014, AZ-01, AZ-02, AZ-03, AZ-04, All tags...
thumbnail
There is a need to understand how alteration of physical processes on the Rio Grande River have impacted aquatic biota and their habitats, and a need to predict potential future effects of climate change on biotic resources in order to prescribe research and management activities that will enhance conservation of aquatic species. We propose a project with the goal of developing monitoring recommendations and identifying research needs for aquatic ecological resources in the Big Bend region of the Rio Grande. This goal will be targeted by synthesizing and analyzing available data and literature for aquatic species in the project region. In particular, we will work to develop time series of abundance and population...
thumbnail
Final Report - Executive Summary: This final project report is prepared to summarize the research project titled “Assessing evapotranspiration rate changes for proposed restoration of the forested uplands of the Desert Landscape Conservation Cooperatives (LCC)” for the Desert LCC of the Bureau of Reclamation as a requirement for closing out the project. This report includes the scope of work, summary of research project, results, and conclusions.Among all of the components of the terrestrial water cycle, evapotranspiration (ET) consumes the largest amount of water. Accurate estimation of ET is very important to understand the influence of ET to the hydrologic response of recharge and runoff processes in the water...
Categories: Data, Publication; Types: Citation, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2012, ATMOSPHERE, ATMOSPHERE, ATMOSPHERIC WATER VAPOR, ATMOSPHERIC WATER VAPOR, All tags...
thumbnail
Description: The upper Gila River in New Mexico is one of the few unobstructed rivers in the Colorado River Basin with largely intact native fish populations, including four federally listed and one state listed species.Freshwater systems throughout the West continue to be threatened by human encroachment and water development. Methodologies or decision support tools to evaluate resource management practices that foster an understanding of how fish species adapt to the effects of climate change are critical to future resource management planning.
thumbnail
This project had two primary goals: 1) To develop a process for integrating data from multiple sources to improve predictions of climate impacts for wildlife species; and 2) To provide data on climate and related hydrological change, fire behavior under future climates, and species’ distributions for use by researchers and resource managers.We present within this report the process used to integrate species niche models, fire simulations, and vulnerability assessment methods and provide species’ reports that summarize the results of this work. Species niche model analysis provides information on species’ distributions under three climate scenarios and time periods. Niche model analysis allows us to estimate the...
thumbnail
Report on research that has shown that management of river connectivity of channels to floodplains is an effective mitigation strategy to remove nutrients, sediment, and carbon from river flows. The confluence of the Maquoketa and Mississippi Rivers is a unique site because: 1) the Maquoketa River carries some of the highest documented sediment and nutrient loads in the Upper Mississippi River (Garrett 2013, Robertson et al 2009); 2) the delta at the confluence with the Mississippi River is heavily managed by a State-Federai-NGO partnership and includes several Habitat Rehabilitation Projects designed to enhance fish and wildlife production and recreational access; 3) a recent nonreparable break in the levy near...
thumbnail
This project used species distribution modeling to assess the risk to habitat change under various climate change scenarios for rare plants. To predict the response of rare plant species to climate change, the project modeled the current distribution of the species using climate and environmental data (e.g., soils, disturbance, land-use), use these models to predict the species distribution given climate change, calculate current and future range size, calculate the amount of overlap of predicted future distribution with current distribution, and assess where barriers and protected areas are located with reference to the change in species distribution. Given the results of the distribution modeling, each species...
thumbnail
Stream fragmentation alters the structure of aquatic communities on a global scale, generally through loss of native species. Among riverscapes in the Great Plains of North America, stream fragmentation and hydrologic alteration (flow regulation and dewatering) are implicated in the decline of native fish diversity. This study documents the spatio–temporal distribution of fish reproductive guilds in the fragmented Arkansas and Ninnescah rivers of south-central Kansas using retrospective analyses involving 63 years of fish community data. Pelagic-spawning fishes declined throughout the study area during 1950–2013, including Arkansas River shiner (Notropis girardi) last reported in 1983, plains minnow (Hybognathus...
Categories: Data, Publication; Types: Citation, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: CATFISHES/MINNOWS, Colorado, Colorado, FISH, Federal resource managers, All tags...
thumbnail
Rate of global biodiversity loss increased significantly during the 20th century associated with human environmental alterations. Specifically, mismanagement of freshwater resources contributed to historical and contemporary loss of stream-dwelling fish diversity and will likely play a role in determining the persistence of species in the future. We present a mechanistic pathway by which human alteration of streams has caused the decline of a unique reproductive guild of Great Plains stream-dwelling fishes, and suggest how future climate change might exacerbate these declines. Stream fragmentation related to impoundments, diversion dams and stream dewatering are consequences of increasing demand for freshwater resources...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2010, AR-04, CATFISHES/MINNOWS, CO-03, CT-04, All tags...
thumbnail
We propose to use long-term fish-population data from a relict reach of the Pecos River, New Mexico to assess population dynamics of imperiled prairie-river minnows, including Arkansas River shiner. Development of viable management strategies requires basic understanding of population ecology. Rigorous, quantitative ecological methods can be used to analyze continuous, long-term demographic data, but such data are rarely available for imperiled, non-game fishes. Data available for the Pecos River provide a unique opportunity to apply quantitative methods to prairie-river minnow conservation and management. Analyses proposed here would determine (1) whether population regulation is density dependent or flow-regime...
thumbnail
Genetic, demographic, and environmental processes affect natural populations synergistically, and understanding their interplay is crucial for the conservation of biodiversity. Stream fishes in metapopulations are particularly sensitive to habitat fragmentation because persistence depends on dispersal and colonization of new habitat but dispersal is constrained to stream networks. Great Plains streams are increasingly fragmented by water diversion and climate change, threatening connectivity of fish populations in this ecosystem. We used seven microsatellite loci to describe population and landscape genetic patterns across 614 individuals from 12 remaining populations of Arkansas darter ( Etheostoma cragini) in...
thumbnail
We used the United States National Grid to develop a sampling grid for monitoring programs in the Great Plains Landscape Conservation Cooperative, delineated by Bird Conservation Regions 18 and 19. Landscape Conservation Cooperatives are science based partnerships with the goal to inform and guide conservation at regional landscape levels. Developing a standardized sampling grid for a LCC is a new endeavor and is designed to reduce program costs, avoid repetition in sampling, and increase efficiency in monitoring programs. This is possible because the grid’s nationwide coverage, uniform starting point, and scalability allow researchers to expand their monitoring programs from a small, local level to a regional or...
thumbnail
Sediment accumulation in playa wetlands, such as those in the Rainwater Basin in south-central Nebraska, reduces the hydrologic functionality and alters the vegetative composition of the wetlands reducing their ability to provide forage and resting habitat for migratory birds. Most Rainwater Basin wetlands have intense agricultural production occuring within their watersheds that accelerate sediment accumulation within the wetland. This sediment accumulation reduced the abilty of the wetland to hold water which, in turn, allows invasive and upland plants to proliferate with the wetland footprint. Planting upland grassland buffers around wetlands reduces the sediment load entering the wetland reducing the need...
thumbnail
Phase 1 & 2 (2010, 2012): This project developed a sampling design and monitoring protocol for wintering shorebirds in the Central Valley and in the San Francisco Bay Estuary and develop an LCC-specific online shorebird monitoring portal publicly available at the California Avian Data Center. The three objectives in Phase II of this project are: 1) Complete the shorebird monitoring plan for the CA LCC by developing a sampling design and monitoring protocol for wintering shorebirds in coastal southern California and northern Mexico. 2) Develop models to evaluate the influence of habitat factors from multiple spatial scales on shorebird use of San Francisco Bay and managed wetlands in the Sacramento Valley, as a model...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2010, 2011, 2013, Academics & scientific researchers, Academics & scientific researchers, All tags...


map background search result map search result map Consequences of stream fragmentation and climate change for rare Great Plains fishes Creating a detailed vegetation classification and digital vegetation map for Squaw Creek NWR Population Management of Prairie-River Minnows Assessing and Mapping Rare Plant Species Vulnerability to Climate Change A Monitoring Protocol to Assess Wintering Shorebird Population Trends Utility Guide to Rainwater/Stormwater Harvesting as an Adaptive Response to Climate Change “Common Ground” Landcover Classification: Oklahoma Ecological Systems Mapping Ecological changes in aquatic communities in the Big Bend reach of the Rio Grande: Synthesis and future monitoring needs Physiological Effects of Climate Change on Species within the Desert LCC Analysis Data: Conservation status, genetics, and population vulnerability of Arkansas darter (Etheostoma cragini) in Colorado RUSLE2 Soil Erosion Model for the Rainwater Basin Region of Nebraska Report and Publications: Assessing Evapotranspiration Rate Changes for Proposed Restoration of the Forested Uplands of the DLCC Final Report: Vulnerability of Riparian Obligate Species in the Rio Grande to the Interactive Effects of Fire, Hydrological Variation and Climate Change Science Brief for Resource Managers: Metacommunity Dynamics of Gila River Fishes Maquoketa River Floodplain Connectivity Research reports LiDAR Derived Watershed Boundaries for Rainwater Basin Wetlands Publication: Fragmentation and drying ratchet down Great Plains stream fish diversity Final Report: Integrated monitoring within BCR’s: Creating a wildlife monitoring grid for the GPLCC Maquoketa River Floodplain Connectivity Research reports Ecological changes in aquatic communities in the Big Bend reach of the Rio Grande: Synthesis and future monitoring needs RUSLE2 Soil Erosion Model for the Rainwater Basin Region of Nebraska LiDAR Derived Watershed Boundaries for Rainwater Basin Wetlands Science Brief for Resource Managers: Metacommunity Dynamics of Gila River Fishes Analysis Data: Conservation status, genetics, and population vulnerability of Arkansas darter (Etheostoma cragini) in Colorado Population Management of Prairie-River Minnows Final Report: Vulnerability of Riparian Obligate Species in the Rio Grande to the Interactive Effects of Fire, Hydrological Variation and Climate Change A Monitoring Protocol to Assess Wintering Shorebird Population Trends “Common Ground” Landcover Classification: Oklahoma Ecological Systems Mapping Report and Publications: Assessing Evapotranspiration Rate Changes for Proposed Restoration of the Forested Uplands of the DLCC Assessing and Mapping Rare Plant Species Vulnerability to Climate Change Consequences of stream fragmentation and climate change for rare Great Plains fishes Publication: Fragmentation and drying ratchet down Great Plains stream fish diversity Final Report: Integrated monitoring within BCR’s: Creating a wildlife monitoring grid for the GPLCC Utility Guide to Rainwater/Stormwater Harvesting as an Adaptive Response to Climate Change Physiological Effects of Climate Change on Species within the Desert LCC