Skip to main content
Advanced Search

Filters: Tags: {"type":"Organization","name":"southeast casc"} (X) > Categories: Publication (X)

62 results (13ms)   

View Results as: JSON ATOM CSV
Efforts to conserve stream and river biota could benefit from tools that allow managers to evaluate landscape-scale changes in species distributions in response to water management decisions. We present a framework and methods for integrating hydrology, geographic context and metapopulation processes to simulate effects of changes in streamflow on fish occupancy dynamics across a landscape of interconnected stream segments. We illustrate this approach using a 482 km2 catchment in the southeastern US supporting 50 or more stream fish species. A spatially distributed, deterministic and physically based hydrologic model is used to simulate daily streamflow for sub-basins composing the catchment. We use geographic data...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1111/1752-1688.12304/abstract): The hydrologic response to statistically downscaled general circulation model simulations of daily surface climate and land cover through 2099 was assessed for the Apalachicola-Chattahoochee-Flint River Basin located in the southeastern United States. Projections of climate, urbanization, vegetation, and surface-depression storage capacity were used as inputs to the Precipitation-Runoff Modeling System to simulate projected impacts on hydrologic response. Surface runoff substantially increased when land cover change was applied. However, once the surface depression storage was added to mitigate the land cover change and increases...
We developed a spatially explicit model that simulated future southern pine beetle (Dendroctonus frontalis, SPB) dynamics and pine forest management for a real landscape over 60 years to inform regional forest management. The SPB has a considerable effect on forest dynamics in the Southeastern United States, especially in loblolly pine (Pinus taeda) stands that are managed for timber production. Regional outbreaks of SPB occur in bursts resulting in elimination of entire stands and major economic loss. These outbreaks are often interspersed with decades of inactivity, making long-term modeling of SPB dynamics challenging. Forest management techniques, including thinning, have proven effective and are often recommended...
Abstract (from ScienceDirect ) Ecosystem accounts, as formalized by the System of Environmental-Economic Accounting Experimental Ecosystem Accounts (SEEA EEA), have been compiled in a number of countries, yet there have been few attempts to develop them for the U.S. We explore the potential for U.S. ecosystem accounting by compiling ecosystem extent, condition, and ecosystem services supply and use accounts for a 10-state region in the Southeast. The pilot accounts address air quality, water quality, biodiversity, carbon storage, recreation, and pollination for selected years from 2001 to 2015. Results illustrate how information from ecosystem accounts can contribute to policy and decision making. Using an example...
Abstract (from http://www.ncbi.nlm.nih.gov/pubmed/26022481): Premise of the study: Salt marshes are highly productive and valuable ecosystems, providing many services on which people depend. Spartina alterniflora Loisel (Poaceae) is a foundation species that builds and maintains salt marshes. Despite this species' importance, much of its basic reproductive biology is not well understood, including flowering phenology, seed production, and the effects of flowering on growth and biomass allocation. We sought to better understand these life history traits and use that knowledge to consider how this species may be affected by climate change. Methods: We examined temporal and spatial patterns in flowering and seed...
Abstract (from Environmental Entomology) An insect species’ geographic distribution is probably delimited in part by physiological tolerances of environmental temperatures. Gloomy scale (Melanaspis tenebricosa (Comstock)) is a native insect herbivore in eastern U.S. forests. In eastern U.S. cities, where temperatures are warmer than nearby natural areas, M. tenebricosa is a primary pest of red maple (Acer rubrum L.; Sapindales: Sapindaceae) With warming, M. tenebricosa may spread to new cities or become pestilent in forests. To better understand current and future M. tenebricosa distribution boundaries, we examined M. tenebricosa thermal tolerance under laboratory conditions. We selected five hot and five cold experimental...
Abstract (from http://www.sciencedirect.com/science/article/pii/S0272771416302724): Salt marshes buffer coastlines and provide critical ecosystem services from storm protection to food provision. Worldwide, these ecosystems are in danger of disappearing if they cannot increase elevation at rates that match sea-level rise. However, the magnitude of loss to be expected is not known. A synthesis of existing records of salt marsh elevation change was conducted in order to consider the likelihood of their future persistence. This analysis indicates that many salt marshes did not keep pace with sea-level rise in the past century and kept pace even less well over the past two decades. Salt marshes experiencing higher local...
Characterizing the risks of anthropogenic climate change poses considerable statistical challenges. A key problem is how to combine the information contained in large-scale observational data sets with simulations of Earth system models in a statistically sound and computationally tractable manner. Here, we describe a statistical approach for improving projections of the North Atlantic meridional overturning circulation (AMOC). The AMOC is part of the global ocean conveyor belt circulation and transfers heat between low and high latitudes in the Atlantic basin. The AMOC might collapse in a “tipping point” response to anthropogenic climate forcings. Assessing the risk of an AMOC collapse is of considerable interest...
Abstract (from MDPI ) Sleeper species are innocuous native or naturalized species that exhibit invasive characteristics and become pests in response to environmental change. Climate warming is expected to increase arthropod damage in forests, in part, by transforming innocuous herbivores into severe pests: awakening sleeper species. Urban areas are warmer than natural areas due to the urban heat island effect and so the trees and pests in cities already experience temperatures predicted to occur in 50–100 years. We posit that arthropod species that become pests of urban trees are those that benefit from warming and thus should be monitored as potential sleeper species in forests. We illustrate this with two case...
Abstract (from SpringerLink) Predation by natural enemies is important for regulating herbivore abundance and herbivory. Theory predicts that complex habitats support more natural enemies, which exert top-down control over arthropods and therefore can reduce herbivory. However, it is unclear if theory developed in other more natural systems similarly apply to predation by vertebrate and invertebrate natural enemies across urban habitats of varying complexity. We used plasticine caterpillar models to assess risk of predation by birds and insects, collected leaf-feeding arthropods, and measured herbivory in willow oak trees (Quercus phellos) in two seasons to determine how predation influenced herbivory across urban...
Managing ecosystems for resilience and sustainability requires understanding how they will respond to future anthropogenic drivers such as climate change and urbanization. In fire-dependent ecosystems, predicting this response requires a focus on how these drivers will impact fire regimes. Here, we use scenarios of climate change, urbanization and management to simulate the future dynamics of the critically endangered and fire-dependent longleaf pine (Pinus palustris) ecosystem. We investigated how climate change and urbanization will affect the ecosystem, and whether the two conservation goals of a 135% increase in total longleaf area and a doubling of fire-maintained open-canopy habitat can be achieved in the...
Abstract (from USGS): Adapting cultural resources to climate-change effects challenges traditional cultural resource decision making because some adaptation strategies can negatively affect the integrity of cultural resources. Yet, the inevitability of climate-change effects—even given the uncertain timing of those effects—necessitates that managers begin prioritizing resources for climate-change adaptation. Prioritization imposes an additional management challenge: managers must make difficult tradeoffs to achieve desired management outcomes related to maximizing the resource values. This report provides an overview of a pilot effort to integrate vulnerability (exposure and sensitivity), significance, and use potential...
Abstract (from ScienceDirect): Natural resource plans play a critical role in guiding the sustainable management of forest ecosystems. However, little is known about the quality of management plans. In this study, we evaluated and compared the quality of 35 management plans from federal, state, and nongovernment groups managing longleaf pine ecosystems in the Southeast United States. We developed a plan evaluation tool consisted of five components: (1) Problem and Objective Statement, (2) Fact Base, (3) Actions and Implementation, (4) Integration with Other Plans, and (5) Stakeholder Participation, to examine to what extent plans incorporated planning best practices. We tested a hypothetical model for understanding...
Abstarct (from Oikos): Urban landscapes are characterized by high proportions of impervious surface resulting in higher temperatures than adjacent natural landscapes. In some cities, like those at cooler latitudes, trees may benefit from warmer urban temperatures, but trees in many cities are beset with problems like drought stress and increased herbivory. What drives patterns of urban tree health across urbanization and latitudinal temperature gradients? In natural systems, latitude–herbivory relationships are well‐studied, and recent temperate studies have shown that herbivory generally increases with decreasing latitudes (warmer temperatures). However, the applicability of this latitude–herbivory theory in already‐warmed...
A software program, called P2S, has been developed which couples the daily stream temperature simulation capabilities of the U.S. Geological Survey Stream Network Temperature model with the watershed hydrology simulation capabilities of the U.S. Geological Survey Precipitation-Runoff Modeling System. The Precipitation-Runoff Modeling System is a modular, deterministic, distributed-parameter, physical-process watershed model that simulates hydrologic response to various combinations of climate and land use. Stream Network Temperature was developed to help aquatic biologists and engineers predict the effects of changes that hydrology and energy have on water temperatures. P2S will allow scientists and watershed managers...