Skip to main content
Advanced Search

Filters: Tags: {"type":"Science Themes"} (X)

3,332 results (211ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Schemes
Tags (with Type=Science Themes )
View Results as: JSON ATOM CSV
thumbnail
UW_Olallie_photo_metadata & image files: These are the raw timelapse photographs. The date/time stamp is inaccurate for the camera deployed in the open (at the SNOTEL) due to a programming error. This timestamp is one day early (i.e., subtract 1 day from the timestamp when using these data). Also available is metadata for two timelapse cameras and their associated snow depth poles (two visible in each camera's field of view) deployed at Olallie Meadows SNOTEL during water year 2015. One camera was deployed in the open area that is the Olallie Meadows SNOTEL station (the snow pillow is in the field of view). The other camera was deployed in the adjacent forest, approximately 60 m to the southeast of the SNOTEL....
These data are netcdf files of the projected timing of the onset of thermal stress severe enough (>8 Degree Heating Weeks) to cause coral bleaching 2x per decade and 10x per decade (annual) under emissions scenarios RCP8.5 and RCP4.5. The projected timing (a year between 2006 and 2100) is the data value. Values are only shown for the ~60,000 four-km pixels where coral reefs are known to occur.
Abstract: P-band interferometric synthetic aperture radar (InSAR) data at 5 m resolution from Kahiltna Glacier, the largest glacier in the Alaska Range, Alaska, USA, show pronounced spatial variation in penetration depth, δ P. We obtained δ P by differencing X- and P-band digital elevation models. δ P varied significantly over the glacier, but it was possible to distinguish representative zones. In the accumulation area, δ P decreased with decreasing elevation from 18±3 m in the percolation zone to 10±4 m in the wet snow zone. In the central portion of the ablation area, a location free of debris and crevasses, we identified a zone of very high δ P (34±4 m) which decreased at lower elevations (23±3 m in bare ice...
This capacity-building activity supported three tribal college and university (TCU) mini-­grants to initiate student phenological and meteorological observation projects in support of climate change research, to document impacts of climate change and development of indigenous geography curriculum. Students made observations of culturally and/or traditionally significant plants to generate data sets for use in climate change impact assessment of these plants and plant communities. The activity contributed to the larger national efforts of the Smithsonian National Museum of the American Indian’s “Indigenous Geography” curricula, by engaging with students at tribal colleges to explore the linkage between the “seasonality”...
Abstract: A significant number of historically existing wetlands that naturally stored rainwater and attenuated flood peaks have now been drained and employed as new farming areas. Beyond the water quality and flow problem, this has resulted in loss of natural habitats of diverse ecological species. Restoring wetlands have hence been proposed as a potential conservation strategy to help attenuate many of these problems. In this study a spatial, multi-objective optimization study of new potential wetlands was carried out to achieve biodiversity improvements in addition to flood reduction benefits and water quality improvements. The Soil and Water Assessment Tool (SWAT) was used to simulate flow and water quality,...
Climate change is already affecting species in many ways. Because individual species respond to climate change differently, some will be adversely affected by climate change whereas others may benefit. Successfully managing species in a changing climate will require an understanding of which species will be most and least impacted by climate change. Although several approaches have been proposed for assessing the vulnerability of species to climate change, it is unclear whether these approaches are likely to produce similar results. In this study, we compared the relative vulnerabilities to climate change of 76 species of birds, mammals, amphibians, and trees based on three different approaches to assessing vulnerability....
This Project Snapshot provides a brief overview of the project "Development of Statistical Methods to Estimate Baseline and Future Low Flow Characteristics of Ungaged Streams in Hawai`i".
(1) This written report summarizes and synthesizes results of literature review, interviews, and workshops, providing the scientific basis for and extension strategies for the management recommendations provided in the "green website" [Data Input New Collection]. The report includes an addendum regarding reference bibliographies and a references list with citations. (2) Selected, unusual references that are not readily available online or through standard academic sources were collected by the project. (3) Selected photographs are retained by the project in electronic form.
thumbnail
This landcover raster was generated through a Random Forest predictive model developed in R using a combination of image-derived and ancillary variables, and field-derived training points grouped into 18 classes. Overall accuracy, generated internally through bootstrapping, was 75.5%. A series of post-modeling steps brought the final number of land cover classes to 28.
thumbnail
Training points collected in the field between 2012 and 2013 were grouped into 18 classes: Forested Burn (66), Foothill Woodland Steppe Transition (73), Greasewood Flat (73), Greasewood Steppe (239), Greasewood Sage Steppe (277), Great Plains Badlands (166), Great Plains Riparian (255), Low Density Sage Steppe (776), Medium Density Sage Steppe (783), Mixed Grass Prairie (555), Mixed Grass Prairie Burned (278), Ponderosa Pine Woodland and Shrubland (512), Riparian Floodplain (223), Semi-Desert Grassland (103), Sparsely Vegetated Mixed Shrub (252), Silver Sage Flat (70) , Silver Sage Steppe (64), and Water (246). When insufficient field data were available for a class, we augmented it through photointerpretation of...
thumbnail
The percentage difference between mean modeled snow-water-equivalent (meters) on April 1 for the reference (1989-2011) climate period and mean modeled snow-water-equivalent on April 1 for the T4 climate change scenario. Reference period: the period 1989 – 2011 for the Upper Deschutes River Basin domain, for which observed historical meteorology is used for model input. T4 scenario: the observed historical (reference period) meteorology is perturbed by adding +4°C to each daily temperature record in the reference period meteorology, and this data is then used as input to the model.
thumbnail
Mean modeled snow-water-equivalent (meters) on February 20, the date of peak basin-integrated mean modeled snow-water-equivalent (meters) for the T4 climate change scenario. Reference period: the period 1989 – 2011 for the Upper Deschutes River Basin domain, for which observed historical meteorology is used for model input. T4 scenario: the observed historical (reference period) meteorology is perturbed by adding +4°C to each daily temperature record in the reference period meteorology, and this data is then used as input to the model.
Efforts to conserve stream and river biota could benefit from tools that allow managers to evaluate landscape-scale changes in species distributions in response to water management decisions. We present a framework and methods for integrating hydrology, geographic context and metapopulation processes to simulate effects of changes in streamflow on fish occupancy dynamics across a landscape of interconnected stream segments. We illustrate this approach using a 482 km2 catchment in the southeastern US supporting 50 or more stream fish species. A spatially distributed, deterministic and physically based hydrologic model is used to simulate daily streamflow for sub-basins composing the catchment. We use geographic data...
America’s remaining grassland in the Prairie Pothole Region (PPR) is at risk of being lost to crop production. When crop prices are high, like the historically high corn prices that the U.S. experienced between 2008 and 2014, the risk of grassland conversion is even higher. Changing climate will add uncertainties to any efforts toward conservation of grassland in the PPR. Grassland conversion to cropland in the region would imperil nesting waterfowl among other species and further impair water quality in the Mississippi watershed. In this project, we sought to contribute to the understanding of land conversion in the PPR with the aim to better target the use of public and private funds allocated toward incentivizing...
Some of California’s most cherished coastal wetlands, where endangered birds chatter and green growth thrives, could turn to mudflats by the middle of the century. By the end of the century, they could be gone. New research based on years of observation says rising sea levels might well outpace the ability of coastal wetlands to adapt, inundating them before they have time to colonize higher elevations. Continue Reading >>
The TopoWx ("Topography Weather") gridded dataset contains historical 30-arcsec resolution (~800-m) interpolations of minimum and maximum topoclimatic air temperature for the conterminous U.S. Using both DEM-based variables and MODIS land skin temperature as predictors of air temperature, interpolation procedures include moving window regression kriging and geographically weighted regression. This temperature set was created independently of the NCCWSC funded project, "Can Camouflage Keep up with Climate Change? Connecting Downscaled Climate Models to Adaptation for a Key Forest Species", but was in part motivated by the project.
This downloadable PDF research feature summarizes the Pacific Islands Climate Science Center-supported project "Modeling Climate-Driven Changes to Dominant Vegetation in the Hawaiian Islands".


map background search result map search result map Modeled snow-water-equivalent, percent difference between historical and projected April 1 values under T4 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, projected seasonal peak values under T4 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Timelapse photos at SNOTEL station, locations, and associated metadata, Ollalie Meadows, Wash., 2015 Charles M. Russell National Wildlife Refuge Spot Landcover Classification in Relation to Greater Sage Grouse Training Points Timelapse photos at SNOTEL station, locations, and associated metadata, Ollalie Meadows, Wash., 2015 Modeled snow-water-equivalent, percent difference between historical and projected April 1 values under T4 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, projected seasonal peak values under T4 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Training Points Charles M. Russell National Wildlife Refuge Spot Landcover Classification in Relation to Greater Sage Grouse