Skip to main content
Advanced Search

Filters: Tags: 2010 (X) > Extensions: Project (X)

114 results (59ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
WGFD has a quantity of GPS-based animal movement data available for processing. In order to fully integrate this data into existing statewide migration route data layers and/or to use it to develop modeled migration corridor data layers, it must be reviewed, organized appropriately, analyzed, modeled and finally structured to allow seamless integration. The objective of this proposal is to review and examine the data, organize it meaningfully, and present it initially in combination with existing migration routes in order to represent generalized big game migration corridors across the landscapes of Wyoming. This is anticipated as a “first look” product, and serve as a basis for future work to more fully analyze...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2010, 2012, CO-2, CO-3, CO-3, All tags...
thumbnail
The Southeastern U.S. spans broad ranges of physiographic settings and contains a wide variety of aquatic systems that provide habitat for hundreds of endemic aquatic species that pose interesting challenges and opportunities for managers of aquatic resources, particularly in the face of climate change. For example, the Southeast contains the southernmost populations of the eastern brook trout and other cold-water dependent species. Climate change is predicted to increase temperatures in the South and is likely to have a substantial effect on extant populations of cold-water biota. Thus, aquatic managers are tasked with developing strategies for preserving cold-water dependent biota, such as eastern brook trout,...
thumbnail
Water scarcity is a growing concern in Texas, where surface water is derived almost entirely from rainfall. Changes in air temperature and precipitation patterns associated with global climate change are anticipated to regionally affect the quality and quantity of inland surface waters and consequently their suitability as habitat for freshwater life. In addition to directly affecting resident organisms and populations, these changes in physicochemical traits of aquatic habitats may favor the establishment of harmful invasive species. As conflicts over the use of water resources grow in intensity, this information will become important for fish and wildlife managers to anticipate impacts of climate change on trust...
CDI helped fund development of the USGS Geo Data Portal in 2010. In 2012, CDI funded two projects to increase the functionality of the Geo Data Portal. The Resources section below contains links to the Geo Data Portal website and deliverables from the 2012 projects. Principal Investigator : David L Blodgett Description of the Geo Data Portal from the Geo Data Portal documentation home : The USGS Geo Data Portal (GDP) project provides scientists and environmental resource managers access to downscaled climate projections and other data resources that are otherwise difficult to access and manipulate. This user interface demonstrates an example implementation of the GDP project web-service software and standards-based...
thumbnail
This project used species distribution modeling to assess the risk to habitat change under various climate change scenarios for rare plants. To predict the response of rare plant species to climate change, the project modeled the current distribution of the species using climate and environmental data (e.g., soils, disturbance, land-use), use these models to predict the species distribution given climate change, calculate current and future range size, calculate the amount of overlap of predicted future distribution with current distribution, and assess where barriers and protected areas are located with reference to the change in species distribution. Given the results of the distribution modeling, each species...
thumbnail
Rate of global biodiversity loss increased significantly during the 20th century associated with human environmental alterations. Specifically, mismanagement of freshwater resources contributed to historical and contemporary loss of stream-dwelling fish diversity and will likely play a role in determining the persistence of species in the future. We present a mechanistic pathway by which human alteration of streams has caused the decline of a unique reproductive guild of Great Plains stream-dwelling fishes, and suggest how future climate change might exacerbate these declines. Stream fragmentation related to impoundments, diversion dams and stream dewatering are consequences of increasing demand for freshwater resources...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2010, AR-04, CATFISHES/MINNOWS, CO-03, CT-04, All tags...
thumbnail
Phase 1 & 2 (2010, 2012): This project developed a sampling design and monitoring protocol for wintering shorebirds in the Central Valley and in the San Francisco Bay Estuary and develop an LCC-specific online shorebird monitoring portal publicly available at the California Avian Data Center. The three objectives in Phase II of this project are: 1) Complete the shorebird monitoring plan for the CA LCC by developing a sampling design and monitoring protocol for wintering shorebirds in coastal southern California and northern Mexico. 2) Develop models to evaluate the influence of habitat factors from multiple spatial scales on shorebird use of San Francisco Bay and managed wetlands in the Sacramento Valley, as a model...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2010, 2011, 2013, Academics & scientific researchers, Academics & scientific researchers, All tags...
2012 Updates (from the FY12 Annual Review) The NWIS Web Services Snapshot represents the next generation of data retrieval and management. The newest Snapshot tool allows instant access to NWIS data from four different web services through ArcGIS, software available to all USGS scientists in all mission areas. Increased data retrieval efficiency reduces the steps required to retrieve and compile water data from multiple sites from what can be more than 30 steps to just a few clicks. As an end-user education tool, it promotes use of NWIS data from both web services and the NWIS database, which increases the production of scientific research and analysis that uses NWIS data. The Snapshot database design enables efficient...
This project designed a monitoring program and protocol to detect the effects of climate change on tidal marsh bird population abundance and distribution. It is a companion to “Tidal Marsh Bird Population and Habitat Assessment for San Francisco Bay under Future Climate Change Conditions” and will build on its products, enabling evaluation of the long-term viability of four tidal-marsh bird species threatened by impacts of climate change: Clapper Rail, Black Rail, Common Yellowthroat, and Song Sparrow (three endemic subspecies: San Pablo, Suisun, and Alameda). Information is available through the California Avian Data Center. See also: http://data.prbo.org/apps/sfbslr/index.php?page=lcc-page


map background search result map search result map Modeling and Projecting the Influence of Climate Change on Texas Surface Waters and their Aquatic Biotic Communities USGS-USFS Partnership to Help Managers Evaluate Conservation Strategies for Aquatic Ecosystems Based on Future Climate Projections Consequences of stream fragmentation and climate change for rare Great Plains fishes State of Wyoming Geospatial Data Management, Information Sharing and Preparation for Decision Support System Development - Migration Corridors Assessing and Mapping Rare Plant Species Vulnerability to Climate Change A Monitoring Protocol to Assess Wintering Shorebird Population Trends State of Wyoming Geospatial Data Management, Information Sharing and Preparation for Decision Support System Development - Migration Corridors A Monitoring Protocol to Assess Wintering Shorebird Population Trends Modeling and Projecting the Influence of Climate Change on Texas Surface Waters and their Aquatic Biotic Communities Assessing and Mapping Rare Plant Species Vulnerability to Climate Change Consequences of stream fragmentation and climate change for rare Great Plains fishes USGS-USFS Partnership to Help Managers Evaluate Conservation Strategies for Aquatic Ecosystems Based on Future Climate Projections