Skip to main content
Advanced Search

Filters: Tags: Alaska CASC (X)

176 results (23ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
This 4-page publication was produced from the March 2013 Juneau Glacier Workshop. The publication describes the current understanding of the interconnected icefield, stream, and ocean systems that are such a dominant feature of coastal Alaska. The publication describes the state of research on glaciers and icefields, glacier ecology, and the role that glaciers play in ocean processes.
Abstract: To test the effects of altered hydrology on organic soil decomposition, we investigated CO2 and CH4 production potential of rich-fen peat (mean surface pH = 6.3) collected from a field water table manipulation experiment including control, raised and lowered water table treatments. Mean anaerobic CO2 production potential at 10 cm depth (14.1 ± 0.9 μmol C g-1 d-1) was as high as aerobic CO2 production potential (10.6 ± 1.5 μmol C g-1 d-1), while CH4 production was low (mean of 7.8 ± 1.5 nmol C g-1 d-1). Denitrification enzyme activity indicated a very high denitrification potential (197 ± 23 μg N g-1 d-1), but net reduction suggested this was a relatively minor pathway for anaerobic CO2 production. Abundances...
A mechanism for better communication between scientists and stakeholders is needed to facilitate the successful exchange of scientific information. This project aims to address this need by developing the ScienceTapes project, an initiative to record and archive conversations between research scientists and non-scientists in order to share science stories to build connections between people, science, and the environment to create a greater understanding of change in Alaska’s (and beyond) landscapes.
Tags: Alaska CASC
thumbnail
Wildfires are a natural occurrence in interior Alaska’s boreal forest. There is extreme variability in the severity of the wildfire season in this region. A single year in which more than one million acres of forest burns can be followed by several years of low to moderate fire activity. In addition, fires in high latitude zones appear to be responding to changes in climate. Warmer temperatures rapidly cure understory fuels, such as fast-drying beds of mosses, lichens, and shrubs, which lie beneath highly flammable conifer trees. Managing such variability is challenging in light of both changing climate conditions and the fact that planning activities require sufficient advance warning. The goal of this project...
thumbnail
These files include downscaled historical decadal average monthly snowfall equivalent ("SWE", in millimeters) for each month at 771 x 771 m spatial resolution. Each file represents a decadal average monthly mean. Historical data for 1910-1919 to 1990-1999 are available for CRU TS3.0-based data and for 1910-1919 to 2000-2009 for CRU TS3.1-based data Snow-fall equivalent estimates were produced by multiplying snow-day fraction ("fs") by decadal average monthly precipitation ("Pr"). (fs*Pr)/100 Snow-day fraction data used can be found here: http://ckan.snap.uaf.edu/dataset/historical-decadal-averages-of-monthly-snow-day-fraction-771m-cru-ts3-0-3-1 Precipitation data used can be found here: http://ckan.snap.uaf.edu/dataset/historical-monthly-and-derived-precipitation-products-771m-cr...
Abstract (from: http://www.igsoc.org/journal/60/221/j13J176.html): The Randolph Glacier Inventory (RGI) is a globally complete collection of digital outlines of glaciers, excluding the ice sheets, developed to meet the needs of the Fifth Assessment of the Intergovernmental Panel on Climate Change for estimates of past and future mass balance. The RGI was created with limited resources in a short period. Priority was given to completeness of coverage, but a limited, uniform set of attributes is attached to each of the ~198 000 glaciers in its latest version, 3.2. Satellite imagery from 1999–2010 provided most of the outlines. Their total extent is estimated as 726 800 +/- 34 000 km2. The uncertainty, about +/-...
thumbnail
Through its many research projects and initiatives, the Alaska Climate Science Center (AK CSC) collects important scientific data that can be shared and used by resource managers in decision-making or other scientists who may access and use the data to move forward the state of the science on a particular topic. The University of Alaska Fairbanks (UAF), through the work of staff at its International Arctic Research Center (IARC), has become one of the primary providers of data services for the Alaska CSC to help make this data available and accessible and to ensure that it meets required standards and is properly managed, stored, and used. In particular, ongoing UAF data stewardship activities include ensuring that...
thumbnail
The western coast of Alaska is a remote region, rich in wildlife and providing critical nesting habitat for many of Alaska’s seabirds. It is also home to indigenous communities who rely upon the region’s natural resources to support a traditional lifestyle of hunting, gathering, and fishing. Although the region is frequently subject to extensive inland flooding from Bering Sea storms, little is known about the extent and frequency of flooding and its impacts on vegetation, wildlife, and water quality. Furthermore, information is lacking about how climate change and sea-level rise (which can influence the frequency and intensity of storms and subsequent flooding) are affecting this area, its communities, and their...
Snow conditions are extremely important to a wide range of hydrologic and ecosystem components and processes, including those related to surface energy and moisture stores and fluxes, vegetation, mammals, birds, and fish. The required snow datasets currently do not exist at the required spatial and temporal resolutions needed by end users such as scientists, land managers, and policy makers.
thumbnail
Ducks and other waterfowl in the U.S. are valued and enjoyed by millions of birdwatchers, artists, photographers and citizens for their beauty and appeal. Waterfowl also provide game for hunters throughout the country and act as an important source of revenue for states and local communities. Loss of habitat and migration corridors due to land use changes and changes in climate threaten these birds, however more scientific information is needed to understand these processes. This project used available annual surveys of duck counts, along with data on the location and availability of ponds and temperature and precipitation patterns, to model where across the continental landscape waterfowl were present and if their...
thumbnail
Water is a key ecosystem service that provides life to vegetation, animals, and human communities. The distribution and flow of water on a landscape influences many ecological functions, such as the distribution and health of vegetation and soil development and function. However, the future of many important water resources remains uncertain. Reduced snowfall and snowpack, earlier spring runoff, increased winter streamflow and flooding, and decreased summer streamflow have all been identified as potential impacts to water resources due to climate change. These factors all influence the water balance in the Pacific Coastal Temperate Rainforest (PCTR). Ensuring healthy flow and availability of water resources is...
thumbnail
Suicide Basin is a glacier-fed lake that branches off Mendenhall Glacier in Juneau, Alaska. Since 2011, Suicide Basin has been collecting melt- and rainwater each summer, creating a temporary glacier-dammed lake. Water that accumulates typically gets released through channels that run beneath the glacier. These channels are normally blocked by ice, but if the water pressure gets too high the channel breaks open, rapidly draining the basin in what is known as an “outburst flood”. In past years, these events have led to flooding along Mendenhall Lake and Mendenhall River in the most heavily populated neighborhood of Juneau. Because of the threats posed to infrastructure in the Mendenhall Valley, it is critical that...
thumbnail
The fast pace of change in coastal zones, the trillions of dollars of investment in human communities in coastal areas, and the myriad of ecosystem services natural coastal environments provide makes managing climate-related risks along coasts a massive challenge for all of the U.S. coastal states and territories. Answering questions about both the costs and the benefits of alternative adaptation strategies in the near term is critical to taxpayers, decision-makers, and to the biodiversity of the planet. There is significant public and private interest in using ecosystem based adaptation approaches to conserve critical significant ecosystems in coastal watersheds, estuaries and intertidal zones and to protect man-made...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/hyp.9934/abstract): Adaptation planning in Alaska, as in other snowy parts of the world, will require snow projections, yet snow is a challenging variable to measure, simulate and downscale. Here we describe the construction and evaluation of 771-m-resolution gridded historical and statistically downscaled projections of snow/rain partitioning for the state of Alaska at decadal temporal resolution. The method developed here uses observational data to describe the relationship between average monthly temperature and the fraction of wet days in that month receiving snow, the snow-day fraction. Regionally and seasonally specific equations were developed to...
Abstract: Arctic tundra ecosystems have experienced unprecedented change associated with climate warming over recent decades. Across the Pan-Arctic, vegetation productivity and surface greenness have trended positively over the period of satellite observation. However, since 2011 these trends have slowed considerably, showing signs of browning in many regions. It is unclear what factors are driving this change and which regions/landforms will be most sensitive to future browning. Here we provide evidence linking decadal patterns in arctic greening and browning with regional climate change and local permafrost-driven landscape heterogeneity. We analyzed the spatial variability of decadal-scale trends in surface greenness...
Streamwater dissolved oxygen (DO) concentrations are driven by interacting physical and biotic parameters. Future DO depletion events in small, coastal salmon streams are therefore likely to be driven by changes in hydrology in addition to atmospheric warming. We measured DO, temperature, discharge and spawning salmon abundance in upstream (reference reach) and downstream salmon bearing reaches of four streams in southeast Alaska to determine how multiple physical and biotic factors interact to control streamwater DO. Stream temperature ranged from 5.1 to 15.8 °C and fell within the optimum range that is considered favorable for salmon physiology. Concentrations of DO ranged from 2.8 to 12.3 mg/L, with concentrations...
thumbnail
Communities, resource managers, and decision makers in Arctic Alaska are in need of scientific information to base important decisions related to anticipating and adapting to changes in temperature and precipitation. Since its inception in 2011, the Alaska Climate Science Center (AK CSC) and its partners have produced a variety of scientific products and datasets aimed at supporting this need and increasing climate change resilience in the Arctic. However, much of the information related to these activities is dispersed across many technical publications, and is often not readily accessible to those outside the research community. In an effort to make this science more available and accessible, the AK CSC is working...
thumbnail
Salmon are an important resource to the ecosystems, economy, and culture of the Kenai Peninsula, Alaska. However, salmon are under increasing stress due to warming water temperatures and decreasing stream flow. Groundwater is a major contributor to many streams that can help maintain fish habitat during low flows and contributes cooler water that regulates stream temperatures in the warm summer months. As the climate warms, the ability for groundwater to cool stream temperatures will likely become more critical to streams that are used by salmon, such as Beaver Creek near Kenai, Alaska. Preliminary analysis of historical streamflow data indicates that on average, Beaver Creek receives nearly 80% of its flow...
thumbnail
Rates of glacier loss in the northern Pacific coastal temperate rainforest (PCTR) are among the highest on Earth. These changes in glacier volume and extent will affect the flow and chemistry of coastal rivers, as well as the nearshore marine ecosystem of the Gulf of Alaska (GOA). Runoff from glaciers accounts for about half of the land-to-ocean movement of freshwater into the GOA, strongly influencing the freshwater and marine ecosystems along the coast. Runoff from glaciers, for example, significantly impacts the water temperature and clarity of aquatic habitats, which are important conditions for salmon reproduction. Moreover, runoff from glaciers along the GOA is an important factor in the structure of the...
thumbnail
Ongoing and future climate change throughout Alaska has the potential to affect terrestrial ecosystems and the services that they provide to the people of Alaska and the nation. These services include the gathering of food and fiber by Alaskan communities, the importance of ecosystems to recreation, cultural, and spiritual activities of people in Alaska, and the way that land cover and vegetation in ecosystems affect temperature and water flow (runoff, flooding etc.) throughout the state. Assessments of the effects of climate change on these “ecosystem services” have been hindered by a lack of tools (e.g. computer models) capable of forecasting future landscapes in a changing climate while taking into account numerous...


map background search result map search result map Development of the Alaska Integrated Ecosystem Model to Illustrate Future Landscape Change Understanding the Links between Climate and Waterbirds Across North America Modeling Future Storm Impacts on the Yukon-Kuskokwim Delta Assessing Links between Glaciers and the Northern Pacific Coastal Temperate Rainforest Ecosystem Projecting the Future Distribution and Flow of Water in Alaskan Coastal Forest Watersheds A Synthesis of Climate Change Impacts and Adaptation in Arctic Alaska Improving the Accessibility and Usability of Scientific Data: Data Management and Data Services for the Alaska CSC Improving Forecasts of Glacier Outburst Flood Events Projecting Future Wildfire Activity in Alaska’s Boreal Forest Evaluating Ecosystem-Based Adaptation Options for Coastal Resilience Groundwater Flow and Temperature Modeling to Predict Stream Temperatures in Beaver Creek, Kenai Peninsula, Alaska Improving Forecasts of Glacier Outburst Flood Events Groundwater Flow and Temperature Modeling to Predict Stream Temperatures in Beaver Creek, Kenai Peninsula, Alaska Modeling Future Storm Impacts on the Yukon-Kuskokwim Delta Projecting the Future Distribution and Flow of Water in Alaskan Coastal Forest Watersheds Projecting Future Wildfire Activity in Alaska’s Boreal Forest Assessing Links between Glaciers and the Northern Pacific Coastal Temperate Rainforest Ecosystem A Synthesis of Climate Change Impacts and Adaptation in Arctic Alaska Development of the Alaska Integrated Ecosystem Model to Illustrate Future Landscape Change Understanding the Links between Climate and Waterbirds Across North America Improving the Accessibility and Usability of Scientific Data: Data Management and Data Services for the Alaska CSC Evaluating Ecosystem-Based Adaptation Options for Coastal Resilience