Skip to main content
Advanced Search

Filters: Tags: Biogeochemistry (X) > partyWithName: Alaska CSC (X)

4 results (42ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Abstract (from http://www.nature.com/nature/journal/v520/n7546/full/nature14338.html): Large quantities of organic carbon are stored in frozen soils (permafrost) within Arctic and sub-Arctic regions. A warming climate can induce environmental changes that accelerate the microbial breakdown of organic carbon and the release of the greenhouse gases carbon dioxide and methane. This feedback can accelerate climate change, but the magnitude and timing of greenhouse gas emission from these regions and their impact on climate change remain uncertain. Here we find that current evidence suggests a gradual and prolonged release of greenhouse gas emissions in a warming climate and present a research strategy with which to...
Abstract (from http://link.springer.com/article/10.1007/s10021-014-9777-1): The Coast Mountains of southeast Alaska are currently experiencing some of the highest rates of glacier volume loss on Earth, with unknown implications for proglacial stream biogeochemistry. We analyzed streamwater for δ18O and dissolved organic matter (DOM) biogeochemistry (concentration, δ13C-dissolved organic carbon (DOC), and fluorescence characterization) during the 2012 glacial runoff season from three coastal watersheds in southeast Alaska that ranged in glacier coverage from 0 to 49% and a glacier outflow stream. Our goal was to assess how DOM biogeochemistry may change as receding glaciers are replaced by forests and glaciers contribute...
thumbnail
The Gulf of Alaska is one of the most productive marine ecosystems on Earth, supporting salmon fisheries that alone provide large economic benefits to Southeast Alaska. The region also has a vibrant and growing tourism industry. Glaciers are central to many of the area’s natural processes and economic activities, but the rates of glacier loss in Alaska are among the highest on Earth. Glacier loss threatens to significantly change the amount and timing of nutrients delivered by streams to near-shore habitats. Changes in glacier runoff into the ocean may also impact coastal currents that contribute to vibrant nearshore marine ecosystems. Improving our understanding of how ecosystems depend on glaciers and what glacier...


    map background search result map search result map Ice2O: A Continued Assessment of Icefield-to-Ocean Change in the Pacific Coastal Temperate Rainforest Ice2O: A Continued Assessment of Icefield-to-Ocean Change in the Pacific Coastal Temperate Rainforest