Skip to main content
Advanced Search

Filters: Tags: CSC (X) > partyWithName: U.S. Geological Survey - ScienceBase (X)

22 results (45ms)   

View Results as: JSON ATOM CSV
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project, documents changes in shoreline position as a proxy for coastal change. Shoreline position is an easily understood...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project, documents changes in shoreline position as a proxy for coastal change. Shoreline position is an easily understood...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project, documents changes in shoreline position as a proxy for coastal change. Shoreline position is an easily understood...
Types: Citation; Tags: Bald Point State Park, CMGP, CSC, Coastal Services Center, Coastal and Marine Geology Program, All tags...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project (http://coastal.er.usgs.gov/shoreline-change/), documents changes in shoreline position as a proxy for coastal...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project (http://coastal.er.usgs.gov/shoreline-change/), documents changes in shoreline position as a proxy for coastal...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes one new mean high water (MHW) shoreline extracted from lidar data collected in 2017 for the entire coastal region of North Carolina which is divided into four subregions: northern North Carolina...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project, documents changes in shoreline position as a proxy for coastal change. Shoreline position is an easily understood...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project, documents changes in shoreline position as a proxy for coastal change. Shoreline position is an easily understood...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project (http://coastal.er.usgs.gov/shoreline-change/), documents changes in shoreline position as a proxy for coastal...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes one new mean high water (MHW) shoreline extracted from lidar data collected in 2017 for the entire coastal region of North Carolina which is divided into four subregions: northern North Carolina...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project (http://coastal.er.usgs.gov/shoreline-change/), documents changes in shoreline position as a proxy for coastal...
thumbnail
Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes a compilation of previously published historical shoreline positions for Virginia spanning 148 years (1849-1997), and two new mean high water (MHW) shorelines extracted from lidar data collected in 2010...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes one new mean high water (MHW) shoreline extracted from lidar data collected in 2017 for the entire coastal region of North Carolina which is divided into four subregions: northern North Carolina...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project (http://coastal.er.usgs.gov/shoreline-change/), documents changes in shoreline position as a proxy for coastal...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project (http://coastal.er.usgs.gov/shoreline-change/), documents changes in shoreline position as a proxy for coastal...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project, documents changes in shoreline position as a proxy for coastal change. Shoreline position is an easily understood...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project (http://coastal.er.usgs.gov/shoreline-change/), documents changes in shoreline position as a proxy for coastal...
Types: Citation; Tags: Atlantic Beach, Atlantic Coast, Bald Head Island, Bogue Banks, Browns Inlet, All tags...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes two new mean high water (MHW) shorelines extracted from lidar data collected in 2010 and 2017-2018. Previously published historical shorelines for South Carolina (Kratzmann and others, 2017)...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project, documents changes in shoreline position as a proxy for coastal change. Shoreline position is an easily understood...
Types: Citation; Tags: Aransas Pass, Bermuda Beach, Bolivar Peninsula, Bryan Beach, CMGP, All tags...
thumbnail
The Digital Shoreline Analysis System (DSAS) is a freely available software application that works within the Environmental Systems Research Institute (ESRI) Geographic Information System (ArcGIS) software. DSAS computes rate-of-change statistics for a time series of shoreline vector data. Additionally, the DSAS application is useful for computing rates of change for any boundary-change problem that incorporates a clearly-identified feature position at discrete times, such as glacier limits, river banks, or land use/cover boundaries. The "bias feature" is a shapefile representation the proxy-datum bias (PDB) data previously published in tabular format (Himmelstoss and others 2010, Himmelstoss and others 2018). These...


map background search result map search result map Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for Alabama Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for Louisiana Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for Mississippi Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for Florida north (FLnorth) Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for Florida west (FLwest) Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for Texas east (TXeast) Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for Texas west (TXwest) Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for Georgia (GA) Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for northeastern Florida (FLne) Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for southeastern Florida (FLse) Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for central North Carolina (NCcentral) Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for northern North Carolina (NCnorth) Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for southern North Carolina (NCsouth) Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for western North Carolina (NCwest) MA Bias Feature – Feature class containing Massachusetts proxy-datum bias information to be used in the Digital Shoreline Analysis System. VA Bias_Feature – Feature class containing Virginia proxy-datum bias information to be used in the Digital Shoreline Analysis System. SC Bias Feature – Feature class containing South Carolina proxy-datum bias information to be used in the Digital Shoreline Analysis System Bias feature containing proxy-datum bias information to be used in the Digital Shoreline Analysis System for the central coast of North Carolina from Cape Hatteras to Cape Lookout (NCcentral) Bias feature containing proxy-datum bias information to be used in the Digital Shoreline Analysis System for the southern coast of North Carolina from Cape Lookout to Cape Fear (NCsouth) Bias feature containing proxy-datum bias information to be used in the Digital Shoreline Analysis System for the northern coast of North Carolina from the Virginia border to Cape Hatteras (NCnorth) Bias feature containing proxy-datum bias information to be used in the Digital Shoreline Analysis System for the northern coast of North Carolina from the Virginia border to Cape Hatteras (NCnorth) Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for Texas west (TXwest) Bias feature containing proxy-datum bias information to be used in the Digital Shoreline Analysis System for the central coast of North Carolina from Cape Hatteras to Cape Lookout (NCcentral) Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for Georgia (GA) VA Bias_Feature – Feature class containing Virginia proxy-datum bias information to be used in the Digital Shoreline Analysis System. Bias feature containing proxy-datum bias information to be used in the Digital Shoreline Analysis System for the southern coast of North Carolina from Cape Lookout to Cape Fear (NCsouth) Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for Florida west (FLwest) MA Bias Feature – Feature class containing Massachusetts proxy-datum bias information to be used in the Digital Shoreline Analysis System. Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for Louisiana Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for Florida north (FLnorth) SC Bias Feature – Feature class containing South Carolina proxy-datum bias information to be used in the Digital Shoreline Analysis System Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for Texas east (TXeast) Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for northeastern Florida (FLne) Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for southeastern Florida (FLse) Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for central North Carolina (NCcentral) Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for northern North Carolina (NCnorth) Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for southern North Carolina (NCsouth) Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for western North Carolina (NCwest)