Skip to main content
Advanced Search

Filters: Tags: California (X) > Date Range: {"choice":"month"} (X) > Types: OGC WMS Service (X)

25 results (31ms)   

View Results as: JSON ATOM CSV
thumbnail
This data release contains monthly 270-meter resolution Basin Characterization Model (BCMv8) climate and hydrologic variables for Localized Constructed Analog (LOCA; Pierce et al., 2014)-downscaled ACCESS 1.0 Global Climate Model (GCM) for Representative Concentration Pathway (RCP) 4.5 (medium-low emissions) and 8.5 (high emissions) for hydrologic California. The LOCA climate scenarios span water years 1950 to 2099 with greenhouse-gas forcings beginning in 2006. The LOCA downscaling method has been shown to produce better estimates of extreme events and reduces the common downscaling problem of too many low-precipitation days (Pierce et al., 2014). Ten GCMs were selected from the full ensemble of models from the...
thumbnail
This data release contains monthly 270-meter resolution Basin Characterization Model (BCMv8) climate and hydrologic variables for Localized Constructed Analog (LOCA; Pierce et al., 2014)-downscaled Global Climate Models (GCMs) for Representative Concentration Pathway (RCP) 4.5 (medium-low emissions) and 8.5 (high emissions) for hydrologic California. The 20 future climate scenarios consist of ten GCMs with RCP 4.5 and 8.5 each: ACCESS 1.0, CanESM2, CCSM4, CESM1-BGC, CMCC-CMS, CNRM-CM5, GFDL-CM3, HadGEM2-CC, HadGEM2-ES, and MIROC5. The LOCA climate scenarios span water years 1950 to 2099 with greenhouse-gas forcings beginning in 2006. The LOCA downscaling method has been shown to produce better estimates of extreme...
thumbnail
The data herein are geochemical (from X-Ray fluorescence spectrometry), grain size (percent clay, silt, sand), lithological (loss on ignition data), bathymetric, reconstructed IVT, and radioactive isotopes (14-C, 210-Pb, 226-Ra, and 137-Cs). These data were collected from sediments from Leonard Lake, Mendocino County, California, USA starting in 2014. Together, these data provide evidence for a record of extreme precipitation going back three millennia, showing regional pluvial and drought cycles.
thumbnail
The distribution and abundance of cheatgrass, an invasive annual grass native to Eurasia, has increased substantially across the Intermountain West, including the Great Basin. Cheatgrass is highly flammable, and as it has expanded, the extent and frequency of fire in the Great Basin has increased by as much as 200%. These changes in fire regimes are associated with loss of the native sagebrush, grasses, and herbaceous flowering plants that provide habitat for many native animals, including Greater Sage-Grouse. Changes in vegetation and fire management have been suggested with the intent of conserving Greater Sage-Grouse. However, the potential responses of other sensitive-status birds to these changes in management...
thumbnail
This data release includes multispectral images and field measurements of water depth from the Sacramento River near Glenn, California, used to evaluate the potential for efficient reach-scale mapping of river bathymetry using Uncrewed Aircraft Systems (UAS). The images were acquired by a MicaSense RedEdge-MX Dual Camera deployed from a Trinity F90 vertical take-off and landing (VTOL) UAS. The 4 km long study area along the Sacramento River was subdivided into three distinct but adjacent areas of interest (AOIs) and image data were collected from one AOI each day between September 14 and 16, 2021. The image data were ortho-rectified using Quantum-Systems QBase 3D and Agisoft Metashape software and saved as GeoTIFF...
thumbnail
Continuous 15-minute time-series suspended-sediment concentration (SSC) data computed from U.S. Geological Survey (USGS) instream turbidity data using a YSI 6-series multi-parameter water quality sonde for the North Mokelumne River near Walnut Grove, California, USGS station #11336685. A model archive summary describes the development of a continuous 15-minute SSC time-series regression model.
thumbnail
This data release contains monthly 270-meter resolution Basin Characterization Model (BCMv8) climate and hydrologic variables for Localized Constructed Analog (LOCA; Pierce et al., 2014)-downscaled GFDL-CM3 Global Climate Model (GCM) for Representative Concentration Pathway (RCP) 4.5 (medium-low emissions) and 8.5 (high emissions) for hydrologic California. The LOCA climate scenarios span water years 1950 to 2099 with greenhouse-gas forcings beginning in 2006. The LOCA downscaling method has been shown to produce better estimates of extreme events and reduces the common downscaling problem of too many low-precipitation days (Pierce et al., 2014). Ten GCMs were selected from the full ensemble of models from the fifth...
thumbnail
This data release contains monthly 270-meter resolution Basin Characterization Model (BCMv8) climate and hydrologic variables for Localized Constructed Analog (LOCA; Pierce et al., 2014)-downscaled CESM1-BGC Global Climate Model (GCM) for Representative Concentration Pathway (RCP) 4.5 (medium-low emissions) and 8.5 (high emissions) for hydrologic California. The LOCA climate scenarios span water years 1950 to 2099 with greenhouse-gas forcings beginning in 2006. The LOCA downscaling method has been shown to produce better estimates of extreme events and reduces the common downscaling problem of too many low-precipitation days (Pierce et al., 2014). Ten GCMs were selected from the full ensemble of models from the...
thumbnail
This data release contains monthly 270-meter resolution Basin Characterization Model (BCMv8) climate and hydrologic variables for Localized Constructed Analog (LOCA; Pierce et al., 2014)-downscaled MIROC5 Global Climate Model (GCM) for Representative Concentration Pathway (RCP) 4.5 (medium-low emissions) and 8.5 (high emissions) for hydrologic California. The LOCA climate scenarios span water years 1950 to 2099 with greenhouse-gas forcings beginning in 2006. The LOCA downscaling method has been shown to produce better estimates of extreme events and reduces the common downscaling problem of too many low-precipitation days (Pierce et al., 2014). Ten GCMs were selected from the full ensemble of models from the fifth...
thumbnail
This data release contains monthly 270-meter resolution Basin Characterization Model (BCMv8) climate and hydrologic variables for Localized Constructed Analog (LOCA; Pierce et al., 2014)-downscaled CCSM4 Global Climate Model (GCM) for Representative Concentration Pathway (RCP) 4.5 (medium-low emissions) and 8.5 (high emissions) for hydrologic California. The LOCA climate scenarios span water years 1950 to 2099 with greenhouse-gas forcings beginning in 2006. The LOCA downscaling method has been shown to produce better estimates of extreme events and reduces the common downscaling problem of too many low-precipitation days (Pierce et al., 2014). Ten GCMs were selected from the full ensemble of models from the fifth...
thumbnail
FY2010In addition to regional Science and Traditional Ecological Knowledge projects that the Great Basin LCC (GBLCC) supports, GBLCC staff lend technical expertise to a range of projects and have contributed to important regional publications on a range of subjects. These publications range in type from textbooks, to management-oriented science and conservation plans, to scientific papers and have covered subjects like wind erosion following fire, soil microbiota response to drought, plant community resilience to invasive species, and alpine plant communities. In many cases these publications form foundations for scientifically-informed management strategies across the Great Basin.
thumbnail
This data release contains monthly 270-meter resolution Basin Characterization Model (BCMv8) climate and hydrologic variables for Localized Constructed Analog (LOCA; Pierce et al., 2014)-downscaled HadGEM2-CC Global Climate Model (GCM) for Representative Concentration Pathway (RCP) 4.5 (medium-low emissions) and 8.5 (high emissions) for hydrologic California. The LOCA climate scenarios span water years 1950 to 2099 with greenhouse-gas forcings beginning in 2006. The LOCA downscaling method has been shown to produce better estimates of extreme events and reduces the common downscaling problem of too many low-precipitation days (Pierce et al., 2014). Ten GCMs were selected from the full ensemble of models from the...
thumbnail
This data release contains monthly 270-meter resolution Basin Characterization Model (BCMv8) climate and hydrologic variables for Localized Constructed Analog (LOCA; Pierce et al., 2014)-downscaled HadGEM2-ES Global Climate Model (GCM) for Representative Concentration Pathway (RCP) 4.5 (medium-low emissions) and 8.5 (high emissions) for hydrologic California. The LOCA climate scenarios span water years 1950 to 2099 with greenhouse-gas forcings beginning in 2006. The LOCA downscaling method has been shown to produce better estimates of extreme events and reduces the common downscaling problem of too many low-precipitation days (Pierce et al., 2014). Ten GCMs were selected from the full ensemble of models from the...
thumbnail
Mollusks from basin facies of Sisquoc formation. California. Plate 9, in U.S.Geological Survey Professional Paper 222. 1950.
thumbnail
The geochemical data included here were generated as part of the Earth Mapping Resources Initiative (Earth MRI), which was developed by the U.S. Geological Survey (USGS) in response to a Federal directive calling on various Federal agencies to address potential vulnerabilities in the Nation’s supply of critical mineral resources. Earth MRI is a partnership between the USGS, State Geological Surveys, and industry coordinating with other federal agencies to accomplish the mission. The primary purpose of this initiative is to identify potentially mineralized areas containing critical minerals by gathering new basic geologic data about the United States and its territories and to make these data publicly available through...
Categories: Data, Data Release - Revised; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service, Shapefile; Tags: Alabama, Alaska, Alaska Division of Geological & Geophysical Surveys, Arizona, Arizona Geological Survey, All tags...
thumbnail
This data release contains monthly 270-meter resolution Basin Characterization Model (BCMv8) climate and hydrologic variables for Localized Constructed Analog (LOCA; Pierce et al., 2014)-downscaled CNRM-CM5 Global Climate Model (GCM) for Representative Concentration Pathway (RCP) 4.5 (medium-low emissions) and 8.5 (high emissions) for hydrologic California. The LOCA climate scenarios span water years 1950 to 2099 with greenhouse-gas forcings beginning in 2006. The LOCA downscaling method has been shown to produce better estimates of extreme events and reduces the common downscaling problem of too many low-precipitation days (Pierce et al., 2014). Ten GCMs were selected from the full ensemble of models from the fifth...
thumbnail
This is the USGS California Water Science Center's Catalog and Repository space. This space primarily supports CAWSC science projects by providing a place to organize and publicly release data which cannot fit within the USGS's National Water Information System. The CAWSC mission is to collect, analyze and disseminate impartial hydrologic data and information needed to wisely manage water resources for the people of the United States and the State of California. CAWSC Web site: http://ca.water.usgs.gov/
thumbnail
This data release provides an example data set to accompany the manuscript titled "A Robot Operating System (ROS) package for mapping flow fields in rivers via Particle Image Velocimetry (PIV)", submitted to the journal Software X. This ROS *.bag file contains remotely sensed data acquired during an Uncrewed Aircraft System (UAS) flight along a reach of the Sacramento River near Glenn, California, USA, on September 16, 2022. Cooperators on this project include the Intelligent Robotics Group from the National Aeronautics and Space Administration (NASA) Ames Research Center and the National Oceanographic and Atmospheric Administration (NOAA) Southwest Fisheries Science Center. The file bag6xs600.bag contains a single...
thumbnail
This data release includes the data and code used for the paper titled "A framework to facilitate development and testing of image-based river velocimetry algorithms", published in the journal Earth Surface Processes and Landforms. Three *.csv files and five *.m files with MATLAB source code are included below. Each *.csv file contains output from a hydrodynamic model of a reach of the Sacramento River near Glenn, California, with a separate file for each of three different discharges (i.e., streamflow rates): 90, 191, and 255 cubic meters per second. The hydrodynamic model used for this purpose was the Nays2DH solver available within the International River Cooperative Interface (iRIC). Provided below is a link...
thumbnail
The U.S. Army Fort Irwin National Training Center (NTC), approximately 35 mi north-northeast of Barstow, California, covers approximately 1,177 square miles, and is comprised of ten groundwater basins, three of which have been subdivided into subbasins on the basis of additional hydrologic testing. Since the early 1990s, the U.S. Geological Survey (USGS) has been studying water resources issues at Fort Irwin. One issue of concern is the potential effect of groundwater development resulting from planned training expansion and infrastructure at the NTC on natural springs and seeps, an important water source for wildlife. In 2010, the USGS entered into cooperative agreements with the U.S. Army to complete studies of...


map background search result map search result map Mollusks from basin facies of Sisquoc formation. California. No date. Relations Among Cheatgrass, Fire, Climate, and Sensitive-Status Birds across the Great Basin USGS California Water Science Center Research and Publications Authored and Supported by GBLCC Staff Electrical Resistivity Tomography Inverted Models Geochemical data generated by projects funded by the USGS Earth Mapping Resources Initiative (ver. 9.0, February 2024) Future Climate and Hydrology from Twenty Localized Constructed Analog (LOCA) Scenarios and the Basin Characterization Model (BCMv8) Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model ACCESS 1.0 Model Archive Summary for Turbidity Derived Suspended-Sediment Concentrations at USGS Station 11336685; North Mokelumne River near Walnut Grove, California (2011 - 2015) Hydrodynamic model output and image simulation code for evaluating image-based river velocimetry from a case study on the Sacramento River near Glenn, California Multispectral images and field measurements of water depth from the Sacramento River near Glenn, California, acquired September 14-16, 2021 Remotely sensed data from a reach of the Sacramento River near Glenn, California, used to perform Particle Image Velocimetry (PIV) within the Robot Operating System (ROS) Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model CCSM4 Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model CESM1-BGC Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model CNRM-CM5 Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model GFDL-CM3 Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model HadGEM2-ES Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model HadGEM2-CC Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model MIROC5 Geochemical, grain size, lithological, bathymetric, reconstructed integrated vapor transport, and age model data for Leonard Lake, Mendocino County Model Archive Summary for Turbidity Derived Suspended-Sediment Concentrations at USGS Station 11336685; North Mokelumne River near Walnut Grove, California (2011 - 2015) Hydrodynamic model output and image simulation code for evaluating image-based river velocimetry from a case study on the Sacramento River near Glenn, California Remotely sensed data from a reach of the Sacramento River near Glenn, California, used to perform Particle Image Velocimetry (PIV) within the Robot Operating System (ROS) Multispectral images and field measurements of water depth from the Sacramento River near Glenn, California, acquired September 14-16, 2021 Electrical Resistivity Tomography Inverted Models Geochemical, grain size, lithological, bathymetric, reconstructed integrated vapor transport, and age model data for Leonard Lake, Mendocino County Mollusks from basin facies of Sisquoc formation. California. No date. USGS California Water Science Center Research and Publications Authored and Supported by GBLCC Staff Relations Among Cheatgrass, Fire, Climate, and Sensitive-Status Birds across the Great Basin Future Climate and Hydrology from Twenty Localized Constructed Analog (LOCA) Scenarios and the Basin Characterization Model (BCMv8) Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model ACCESS 1.0 Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model CCSM4 Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model CESM1-BGC Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model CNRM-CM5 Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model GFDL-CM3 Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model HadGEM2-ES Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model HadGEM2-CC Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model MIROC5 Geochemical data generated by projects funded by the USGS Earth Mapping Resources Initiative (ver. 9.0, February 2024)