Skip to main content
Advanced Search

Filters: Tags: Climate Change (X) > Date Range: {"choice":"week"} (X)

44 results (32ms)   

Filters
Date Types (for Date Range)
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
The USGS National Climate Change and Wildlife Science Center (NCCWSC), as part of the work of the Interagency Land Management Adaptation Group (ILMAG), initiated a project in 2013 to develop plans for a searchable, public registry on climate change vulnerability assessments. Member agencies from the USGCRP Adaptation Science Work Group, the Association of Fish and Wildlife Agencies (AFWA), and several NGO’s also contributed. Vulnerability assessments are important for identifying resources that are most likely to be affected by climate change and providing insights on why certain resources are vulnerable. Consequently, they provide valuable information for informing climate change adaptation planning. CRAVe allows...
thumbnail
Coastal wetlands and the many beneficial services they provide (e.g., purifying water, buffering storm surge, providing habitat) are changing and disappearing as a result of sea-level rise brought about by climate change. Scientists have developed a wealth of information and resources to predict and aid decision-making related to sea-level rise. However, while some of these resources are easily accessible by coastal managers, many others require more expert knowledge to understand or utilize. The goal of this project was to collate science and models pertaining to the effects of sea-level on coastal wetlands into a format that would be accessible and useful to resource managers. Researchers conducted training sessions...
thumbnail
Assessing the impact of flow alteration on aquatic ecosystems has been identified as a critical area of research nationally and in the Southeast U.S. This project aimed to address the Ecohydrology Priority Science Need of the SE CSC FY2012 Annual Science Work Plan by developing an inventory and evaluation of current efforts and knowledge gaps in hydrological modeling for flow-­‐ecology science in global change impact studies across the Southeast. To accomplish this goal, we completed a thorough synthesis and evaluation of hydrologic modeling efforts in the Southeast region (including all states of the Southeastern Association of Fish and Wildlife Agencies (SEAFWA) including Alabama, Arkansas, Florida, Georgia, Kentucky,...
thumbnail
The Southeastern U.S. spans broad ranges of physiographic settings and contains a wide variety of aquatic systems that provide habitat for hundreds of endemic aquatic species that pose interesting challenges and opportunities for managers of aquatic resources, particularly in the face of climate change. For example, the Southeast contains the southernmost populations of the eastern brook trout and other cold-water dependent species. Climate change is predicted to increase temperatures in the South and is likely to have a substantial effect on extant populations of cold-water biota. Thus, aquatic managers are tasked with developing strategies for preserving cold-water dependent biota, such as eastern brook trout,...
thumbnail
A hydrologic model was developed as part of the Southeast Regional Assessment Project using the Precipitation Runoff Modeling System (PRMS), a deterministic, distributed-parameter, process-based system that simulates the effects of precipitation, temperature, and land use on basin hydrology. Streamflow and other components of the hydrologic cycle simulated by PRMS were used to inform other types of simulations such as water-temperature, hydrodynamic, and ecosystem-dynamics simulations.
thumbnail
Peak-flow frequency analysis is crucial in various water-resources management applications, including floodplain management and critical structure design. Federal guidelines for peak-flow frequency analyses, provided in Bulletin 17C, assume that the statistical properties of the hydrologic processes driving variability in peak flows do not change over time and so the frequency distribution of annual peak flows is stationary. Better understanding of long-term climatic persistence and further consideration of potential climate and land-use changes have caused the assumption of stationarity to be reexamined. This data release contains input data and results of a study investigating hydroclimatic trends in peak streamflow...
thumbnail
Quaking aspen populations are declining in much of the West due to altered fire regimes, competition with conifers, herbivory, drought, disease, and insect outbreaks. Aspen stands typically support higher bird biodiversity and abundance than surrounding habitat types, and maintaining current distribution and abundance of several bird species in the northern Great Basin is likely tied to the persistence of aspen in the landscape. This project examined the effects of climate change on aspen and associated bird communities by coupling empirical models of avian-habitat relationships with landscape simulations of vegetation community and disturbance dynamics under various climate change scenarios. Field data on avian...
thumbnail
Coral reefs are some of the most biologically rich and economically valuable ecosystems in the world. They provide food, fishing, and recreation opportunities for millions of people, protect coastlines from storms, and shelter thousands of plant and animal species. However, climate change is contributing to the degradation of coral reefs in two significant ways: warming temperature and increasing acidification of ocean waters. Scientists are actively working to gather more specific information about how these factors will impact coral reef ecosystems. The purpose of this study was to identify differences in climate vulnerability among three important reef-building coral species in the Florida Keys. Researchers...
thumbnail
Climate in the southeastern U.S. is predicted to be changing at a slower rate than other parts of North America; however, land use change associated with urbanization is having a significant effect on wildlife populations and habitat availability. We sought to understand the effect of global warming on both beneficial and pest insects of trees. We used urban warming as a proxy for global warming in as much as many cities have already warmed as much, due to heat island effects, as they are expected to warm due to climate change by 2050 or even 2100. We were able to develop good predictive models of how warming influences beneficial and pest insects for cities in the Southeast and across the east coast more generally....
thumbnail
As glaciers melt from climate change, their contents – namely, large quantities of freshwater, sediment, and nutrients – are slowly released into coastal ecosystems. This project addressed the impacts of melting glaciers on coastal ecosystems in the Copper River region of the Gulf of Alaska, which is home to several commercially important fisheries. Researchers examined how glacial melting is altering the amount and timing of freshwater that enters the Gulf of Alaska from the Copper River. They also investigated the source and amount of two nutrients, iron and nitrate, dissolved in the water. As a complementary piece of the study, researchers tested the relationship between nutrient levels, plankton populations,...
thumbnail
In the Southeast, where rapid human development is increasingly dividing natural areas, habitat fragmentation and loss threaten the health and even genetic viability of wildlife populations, and interrupt migration routes. Climate change is projected to exacerbate fragmentation by further disrupting landscapes. To make matters worse, it is also expected to shift the range of many species, forcing animals capable of adapting by moving to expand into new areas to find more suitable temperatures and adequate food supplies – a challenge made difficult, if not impossible, by disconnected landscapes. Maintaining connectivity between habitats is a key strategy for conserving wildlife populations into the future, and sound...
thumbnail
This product used species distribution modeling (SDM) to model the geographic distribution fire promoting grasses across the islands of Hawaii under both current climate conditions and under future climate change scenarios (RCP 8.5 at year 2100). The RCP 8.5 scenario assumes unmitigated and continued release of greenhouse grasses and continued human population growth. Six species of well established and widely distributed grasses (Andropogon virginicus (broomsedge), Cenchrus ciliaris (buffelgrass), Cenchrus setaceus (fountain grass), Megathyrus maximus (guinea grass, Urochloa maxima, Pancicum maximum), Melinis minutiflora (mollasses grass), and Schizachyrium microstachyum (formerly referred to as S. condensatum...
thumbnail
Increasing temperatures and decreasing precipitation threaten the persistence of the Rio Grande cutthroat trout, the southernmost subspecies of cutthroat trout, found only in parts of New Mexico and Colorado. This subspecies appears to be more vulnerable to drought than more northern subspecies, because it occupies small and fragmented streams which are at greater risk of drying up during drought. Most notably, in 2002 drought in the Southwest resulted in the loss of 14 different Rio Grande cutthroat trout populations – about 10% of the total population. While it is known that drought is having an effect on Rio Grande cutthroat trout, the specific ways in which individuals and populations are affected by drought...
thumbnail
Inland fisheries are critical for global food security and human well-being. However, fish production may be threatened by changes in climate and land use. Understanding this threat is crucial to effectively manage inland fisheries in the future. To address this need, this project will identify which types of lakes across the globe are most vulnerable to the impacts of climate and land use changes. Lakes will be categorized based on their depth, vulnerability to food insecurity, and vulnerability to water insecurity – variables which can all influence how detrimental climate and land use change will actually be on a lake. This information will be used to predict how inland fisheries production might change under...
thumbnail
This project addressed regional climate change effects on aquatic food webs in the Great Lakes. We sought insights by examining Lake Erie as a representative system with a high level of anthropogenic impacts, strong nutrient gradients, seasonal hypoxia, and spatial overlap of cold- and cool-water fish guilds. In Lake Erie and in large embayments throughout the Great Lakes basin, this situation is a concern for fishery managers, as climate change may exacerbate hypoxia and reduce habitat volume for some species. We examined fish community composition, fine-scale distribution, prey availability, diets, and biochemical tracers for dominant fishes from study areas with medium-high nutrient levels (mesotrophic, Fairport...
thumbnail
Coastal rivers draining into the Gulf of Maine are home to the endangered Gulf of Maine Distinct Population Segment of Atlantic salmon. The Gulf of Maine population began to decline significantly by the late 19th century, leading to the closure of the commercial Atlantic salmon fishery in 1948. In recent years, populations have again begun to decrease again. State and federal fisheries biologists are concerned that climate-related changes in streamflow and temperature could impact salmon survival in these rivers. Projections of future climate conditions for the Northeast indicate warming air temperatures, earlier snowmelt runoff, and decreases in streamflow during the low flow period (summer). In the spring, snow...
thumbnail
North American freshwater mussels are in serious decline as a result of pollution and habitat destruction from human activities. In addition, many mussel species are living in habitats that push the upper limits of their heat tolerance, which may become problematic as the climate and, as a result, water temperatures warm. As part of this project, we created a set of models to predict how freshwater mussels would respond to climate change effects. Our primary objective was to help federal and state natural resource managers forecast how mussel species will respond to climate change over the next 30 to 50 years, so that managers can develop appropriate adaptation strategies to address these changes. Additionally,...
thumbnail
The number of fish collected in routine monitoring surveys often varies from year to year, from lake to lake, and from location to location within a lake. Although some variability in fish catches is expected across factors such as location and season, we know less about how large-scale disturbances like climate change will influence population variability. The Laurentian Great Lakes in North America are the largest group of freshwater lakes in the world, and they have experienced major changes due to fluctuations in pollution and nutrient loadings, exploitation of natural resources, introductions of non-native species, and shifting climatic patterns. In this project, we analyzed established long-term data about...
thumbnail
Researchers from North Carolina State University and the USGS integrated models of urbanization and vegetation dynamics with the regional climate models to predict vegetation dynamics and assess how landscape change could impact priority species, including North American land birds. This integrated ensemble of models can be used to predict locations where responses to climate change are most likely to occur, expressing results in terms of species persistence to help resource managers understand the long-term sustainability of bird populations.
thumbnail
The timing of biological events in plants and animals, such as migration and reproduction, is shifting due to climate change. Anadromous fishes are particularly susceptible to these shifts, as they are subject to strong seasonal cycles when transitioning between marine and freshwater habitats to spawn. We used linear models to determine the extent of phenological shifts in adult alewife (Alosa pseudoharengus) as they migrated from ocean to freshwater environments during spring to spawn at 12 sites along the northeast U.S. We also evaluated broad-scale oceanic and atmospheric drivers that trigger their movements from offshore to inland habitats including sea surface temperature (SST), North Atlantic Oscillation index,...


map background search result map search result map Impact of Changes in Streamflow and Temperature on Endangered Atlantic Salmon Impacts of Climate Change and Melting Glaciers on Coastal Ecosystems in the Gulf of Alaska Modeling the Response of Freshwater Mussels to Changes in Water Temperature, Habitat, and Streamflow Quantifying Vulnerability of Quaking Aspen Woodlands and Associated Bird Communities to Global Climate Change in the Northern Great Basin Understanding How Warming Temperatures Will Impact Trees and Insects Using Cities as a Proxy Impact of Ocean Warming and Acidification on Growth of Reef-Building Corals USGS-USFS Partnership to Help Managers Evaluate Conservation Strategies for Aquatic Ecosystems Based on Future Climate Projections Understanding the Varying Responses of Fish Populations to Future Climate Understanding How Climate Change Will Impact Aquatic Food Webs in the Great Lakes Understanding Habitat Connectivity to Inform Conservation Decisions Evaluating the Use of Models for Projecting Future Water Flow in the Southeast A Handbook for Resource Managers to Understand and Utilize Sea-Level Rise and Coastal Wetland Models Development of the Climate Registry for the Assessment of Vulnerability (CRAVe): A Searchable, Public Online Tool for Understanding Species and Habitat Vulnerability SERAP:  Modeling of Hydrologic Systems SERAP:  Assessment of Climate and Land Use Change Impacts on Terrestrial Species The Effects of Drought on Rio Grande Cutthroat Trout: The Role of Stream Flow and Temperature Evaluating Future Effects of Climate and Land Use on Fisheries Production in Inland Lakes Peak Streamflow Data, Climate Data, and Results from Investigating Hydroclimatic Trends and Climate Change Effects on Peak Streamflow in the Central United States, 1921–2020 Massachusetts River Herring Daily Counts and Environmental data Species Distribution Modeling of Invasive, Fire Promoting Grasses, Across the Hawaiian Islands in Both 2023 and Under a Future Scenario of Unmitigated Climate Change in 2100 The Effects of Drought on Rio Grande Cutthroat Trout: The Role of Stream Flow and Temperature Quantifying Vulnerability of Quaking Aspen Woodlands and Associated Bird Communities to Global Climate Change in the Northern Great Basin Massachusetts River Herring Daily Counts and Environmental data Understanding How Climate Change Will Impact Aquatic Food Webs in the Great Lakes SERAP:  Modeling of Hydrologic Systems Species Distribution Modeling of Invasive, Fire Promoting Grasses, Across the Hawaiian Islands in Both 2023 and Under a Future Scenario of Unmitigated Climate Change in 2100 Impact of Changes in Streamflow and Temperature on Endangered Atlantic Salmon Impacts of Climate Change and Melting Glaciers on Coastal Ecosystems in the Gulf of Alaska Understanding How Warming Temperatures Will Impact Trees and Insects Using Cities as a Proxy Impact of Ocean Warming and Acidification on Growth of Reef-Building Corals Understanding the Varying Responses of Fish Populations to Future Climate USGS-USFS Partnership to Help Managers Evaluate Conservation Strategies for Aquatic Ecosystems Based on Future Climate Projections SERAP:  Assessment of Climate and Land Use Change Impacts on Terrestrial Species A Handbook for Resource Managers to Understand and Utilize Sea-Level Rise and Coastal Wetland Models Peak Streamflow Data, Climate Data, and Results from Investigating Hydroclimatic Trends and Climate Change Effects on Peak Streamflow in the Central United States, 1921–2020 Understanding Habitat Connectivity to Inform Conservation Decisions Evaluating the Use of Models for Projecting Future Water Flow in the Southeast Modeling the Response of Freshwater Mussels to Changes in Water Temperature, Habitat, and Streamflow Evaluating Future Effects of Climate and Land Use on Fisheries Production in Inland Lakes Development of the Climate Registry for the Assessment of Vulnerability (CRAVe): A Searchable, Public Online Tool for Understanding Species and Habitat Vulnerability