Skip to main content
Advanced Search

Filters: Tags: Digital Shoreline Analysis System (X)

340 results (134ms)   

Filters
View Results as: JSON ATOM CSV
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a shoreline from 1994 was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-9 color aerial orthoimagery and 2007 topographic lidar datasets obtained from the National Oceanic and Atmospheric Administration's Ocean Service, Coastal Services Center. This 2018 data release includes rates that incorporate...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates at 40-meter intervals along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic LIDAR lidar datasets obtained from NOAA's Ocean Service, Coastal Services Center. This 2018 update includes two new mean high water (MHW) shorelines for...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast and support local land-use decisions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic lidar datasets obtained from NOAA's Ocean Service, Coastal...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast and support local land-use decisions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic lidar datasets obtained from NOAA's Ocean Service, Coastal...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast and support local land-use decisions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic lidar datasets obtained from NOAA's Ocean Service, Coastal...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast and support local land-use decisions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic lidar datasets obtained from NOAA's Ocean Service, Coastal...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast and support local land-use decisions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic lidar datasets obtained from NOAA's Ocean Service, Coastal...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast by compiling a database of historical (mid 1800's-1989) shoreline positions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic lidar datasets obtained...
thumbnail
This data set contains rate of shoreline change statistics for New York State coastal wetlands. Analysis was performed in ArcMap 10.5.1 using historical vector shoreline data from the National Oceanic and Atmospheric Administration (NOAA). Rate of change statistics were calculated using the Digital Shoreline Analysis System (DSAS), created by U.S. Geological Survey, version 5.0. End-point rates, presented here, calculated by dividing the distance of shoreline movement by the time elapsed between the oldest and the most recent shoreline, were generated for wetlands where fewer than three historic shorelines were available. Linear regression rates, determined by fitting a least-squares regression line to all shoreline...
thumbnail
During Hurricane Irma in September 2017, Florida and Georgia experienced significant impacts to beaches, dunes, barrier islands, and coral reefs. Extensive erosion and coral losses result in increased immediate and long-term hazards to shorelines that include densely populated regions. These hazards put critical infrastructure at risk to future flooding and erosion and may cause economic losses. The USGS Coastal and Marine Hazards Resources Program (CMHRP) is assessing hurricane-induced coastal erosion along the southeast US coastline and implications for vulnerability to future storms. Shoreline positions were compiled prior to and following Hurricane Irma along the sandy shorelines of the Gulf of Mexico and Atlantic...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a shoreline from 1994 was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-9 color aerial orthoimagery and 2007 topographic lidar datasets obtained from the National Oceanic and Atmospheric Administration's Ocean Service, Coastal Services Center. This 2018 data release includes rates that incorporate...
thumbnail
The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photographs or topographic surveys, and contemporary sources, such as lidar-point clouds and digital elevation models. These shorelines are compiled and analyzed in the USGS Digital Shoreline Analysis System (DSAS), version 5.1 software to calculate rates of change. Keeping a record of historical shoreline positions is an effective method to monitor change over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers understand which areas of the coast are vulnerable to change. This data release, and other associated...
thumbnail
This dataset consists of long-term (less than 68 years) shoreline change rates for the sheltered north coast of Alaska from Icy Cape to Cape Prince of Wales. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.4, an ArcGIS extension developed by the U.S. Geological Survey. Rates of shoreline change were calculated using a linear regression rate-of-change (lrr) method based on available shoreline data between 1948 and 2016. A reference baseline was used as the originating point for the orthogonal transects cast by the DSAS software. The transects intersect each shoreline establishing measurement points, which are then used to calculate rates of change.
thumbnail
This dataset consists of long-term (less than 68 years) shoreline change rates for the exposed coast of the north coast of Alaska from Icy Cape to Cape Prince of Wales. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.4, an ArcGIS extension developed by the U.S. Geological Survey. Rates of shoreline change were calculated using a linear regression rate-of-change (lrr) method based on available shoreline data between 1948 and 2016. A reference baseline was used as the originating point for the orthogonal transects cast by the DSAS software. The transects intersect each shoreline establishing measurement points, which are then used to calculate shoreline change...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes one new mean high water (MHW) shoreline extracted from lidar data collected in 2017 for the entire coastal region of North Carolina which is divided into four subregions: northern North Carolina...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes two new mean high water (MHW) shorelines extracted from lidar data collected in 2010 and 2017-2018. Previously published historical shorelines for South Carolina (Kratzmann and others, 2017)...
thumbnail
This dataset includes shorelines from 65 years ranging from 1947 to 2012 for the north coast of Alaska between the Colville River and Point Barrow. Shorelines were compiled from topographic survey sheets (T-sheets; National Oceanic and Atmospheric Administration (NOAA)), aerial orthophotographs (U.S. Geological Survey (USGS), National Aeronautics and Space Administration (NASA), and lidar elevation data(USGS). Historical shoreline positions serve as easily understood features that can be used to describe the movement of beaches through time. These data are used to calculate rates of shoreline change for the U.S. Geological Survey's National Assessment of Shoreline Change Project. Rates of long-term and short-term...
thumbnail
This dataset consists of long-term (~65 years) shoreline change rates for the north coast of Alaska between Point Barrow and Icy Cape. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.3, an ArcGIS extension developed by the U.S. Geological Survey. Long-term rates of shoreline change were calculated using a linear regression rate-of-change method based on available shoreline data between 1947 and 2012. A reference baseline was used as the originating point for the orthogonal transects cast by the DSAS software. The transects intersect each shoreline establishing measurement points, which are then used to calculate long-term rates.
This dataset consists of rate-of-change statistics for the coastal bluffs at Barter Island, Alaska for the time period 1950 to 2020. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 5.0, an ArcGIS extension developed by the U.S. Geological Survey. A reference baseline was used as the originating point for the orthogonal transects cast by the DSAS software. The transects intersect each bluff line establishing measurement points, which are then used to calculate bluff-change rates.
thumbnail
In coastal areas of the United States, where water and land interface in complex and dynamic ways, it is common to find concentrated residential and commercial development. These coastal areas often contain various landholdings managed by Federal, State, and local municipal authorities for public recreation and conservation. These areas are frequently subjected to a range of natural hazards, which include flooding and coastal erosion. In response, the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data to calculate rates of shoreline change along the conterminous coast of the United States, and select coastlines of Alaska and Hawaii, as part of the Coastal Change Hazards priority...


map background search result map search result map Shorelines of the Western Beaufort Sea, Alaska coastal region (Colville River to Point Barrow) used in shoreline change analysis Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Long-Term Linear Regression Rate Calculations for the Exposed East Chukchi Sea coast of Alaska between Point Barrow and Icy Cape End point rate of shoreline change statistics for New York State coastal wetlands Massachusetts Shoreline Change Project, 2018 Update: A GIS Compilation of Shoreline Change Rates Calculated Using Digital Shoreline Analysis System Version 5.0, With Supplementary Intersects and Baselines for Massachusetts Long-term and short-term shoreline change rates for Nantucket, Massachusetts calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.0 Digital Shoreline Analysis System (DSAS) version 4.4 transects with long-term linear regression rate calculations for the exposed north coast of Alaska, from Icy Cape to Cape Prince of Wales Digital Shoreline Analysis System (DSAS) version 4.4 transects with long-term linear regression rate calculations for the sheltered north coast of Alaska, from Icy Cape to Cape Prince of Wales Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for the southern shoreline of Cape Cod, MA Digital Shoreline Analysis System (DSAS) version 5.0 transects with bluff rate change calculations for the north coast of Barter Island Alaska, 1950 to 2020 Long-term and short-term shoreline change rates for the region of Cape Cod Bay, Massachusetts, calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Intersects for coastal region of Nantucket, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Long-term and short-term shoreline change rates for the region north of Boston, Massachusetts, calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Baseline for the southern coast of Cape Cod, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Intersects for the southern coast of Cape Cod, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Long-term and short-term shoreline change rates for the coastal region south of Boston, Massachusetts, calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Puerto Rico shoreline change: A GIS compilation of shorelines, baselines, intersects, and change rates calculated using the digital shoreline analysis system version 5.1 (ver. 2.0, March 2023) Long-term shoreline change rates for the Georgia coastal region using the Digital Shoreline Analysis System version 5 Baseline for the South Carolina coastal region, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Baseline for the Southern California coastal region generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 Long and short-term shoreline intersect points for the northern coast of North Carolina (NCnorth), calculated using the Digital Shoreline Analysis System version 5.1 Digital Shoreline Analysis System (DSAS) version 5.0 transects with bluff rate change calculations for the north coast of Barter Island Alaska, 1950 to 2020 Intersects for coastal region of Nantucket, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Long-term and short-term shoreline change rates for the region of Cape Cod Bay, Massachusetts, calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Long-term and short-term shoreline change rates for the region north of Boston, Massachusetts, calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Long-term and short-term shoreline change rates for the coastal region south of Boston, Massachusetts, calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Long and short-term shoreline intersect points for the northern coast of North Carolina (NCnorth), calculated using the Digital Shoreline Analysis System version 5.1 Long-term shoreline change rates for the Georgia coastal region using the Digital Shoreline Analysis System version 5 Puerto Rico shoreline change: A GIS compilation of shorelines, baselines, intersects, and change rates calculated using the digital shoreline analysis system version 5.1 (ver. 2.0, March 2023) End point rate of shoreline change statistics for New York State coastal wetlands Massachusetts Shoreline Change Project, 2018 Update: A GIS Compilation of Shoreline Change Rates Calculated Using Digital Shoreline Analysis System Version 5.0, With Supplementary Intersects and Baselines for Massachusetts Baseline for the South Carolina coastal region, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Shorelines of the Western Beaufort Sea, Alaska coastal region (Colville River to Point Barrow) used in shoreline change analysis Baseline for the Southern California coastal region generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Long-Term Linear Regression Rate Calculations for the Exposed East Chukchi Sea coast of Alaska between Point Barrow and Icy Cape Digital Shoreline Analysis System (DSAS) version 4.4 transects with long-term linear regression rate calculations for the sheltered north coast of Alaska, from Icy Cape to Cape Prince of Wales Digital Shoreline Analysis System (DSAS) version 4.4 transects with long-term linear regression rate calculations for the exposed north coast of Alaska, from Icy Cape to Cape Prince of Wales