Skip to main content
Advanced Search

Filters: Tags: Drought, Fire and Extreme Weather (X)

717 results (78ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
We performed bathymetric surveys using a shallow-water echo-sounding system (Takekawa et al., 2010, Brand et al., 2012) comprised of an acoustic profiler (Navisound 210; Reson, Inc., Slangerup, Denmark), Leica RTK GPS Viva rover, and laptop computer mounted on a shallow-draft, portable flat-bottom boat (Bass Hunter, Cabelas, Sidney, NE; Figure 7). The RTK GPS obtained high resolution elevations of the water surface (reported precision 10 cm water depth. We recorded twenty depth readings and one GPS location each second along transects spaced 100 m apart perpendicular to the nearby salt marsh. We calibrated the system before use with a bar-check plate and adjusted the sound velocity for salinity and temperature differences....
thumbnail
To assess the current topography of the tidal marshes we conducted survey-grade elevation surveys at all sites between 2009 and 2013 using a Leica RX1200 Real Time Kinematic (RTK)Global Positioning System (GPS) rover (±1 cm horizontal, ±2 cm vertical accuracy; Leica Geosystems Inc., Norcross, GA; Figure 4). At sites with RTK network coverage (San Pablo, Petaluma, Pt. Mugu, and Newport), rover positions were received in real time from the Leica Smartnet system via a CDMA modem (www.lecia-geosystems.com). At sites without network coverage (Humboldt, Bolinas, Morro and Tijuana), rover positions were received in real time from a Leica GS10 antenna base station via radio link. When using the base station, we adjusted...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/2015GL063238/pdf): The probability tail structure of over 22,000 weather stations globally is examined in order to identify the physically and mathematically consistent distribution type for modeling the probability of intense daily precipitation and extremes. Results indicate that when aggregating data annually, most locations are to be considered heavy tailed with statistical significance. When aggregating data by season, it becomes evident that the thickness of the probability tail is related to the variability in precipitation causing events and thus that the fundamental cause of precipitation volatility is weather diversity. These results have both theoretical...
thumbnail
We used WARMER, a 1-D cohort model of wetland accretion (Swanson et al., 2014), which is based on Callaway et al. (1996), to examine the effects of three SLR projections on future habitat composition at each study site. Each cohort in the model represents the total organic and inorganic matter added to the soil column each year. WARMER calculates annual elevation changes relative to MSL based on projected changes in relative sea level, subsidence, inorganic sediment accumulation, aboveground and belowground organic matter inputs, soil compaction, and organic matter decomposition for a representative marsh area. Cohort density, a function of soil mineral, organic, and water content, is calculated at each time step...
thumbnail
To assess the current topography of the tidal marshes we conducted survey-grade elevation surveys at all sites between 2009 and 2013 using a Leica RX1200 Real Time Kinematic (RTK)Global Positioning System (GPS) rover (±1 cm horizontal, ±2 cm vertical accuracy; Leica Geosystems Inc., Norcross, GA; Figure 4). At sites with RTK network coverage (San Pablo, Petaluma, Pt. Mugu, and Newport), rover positions were received in real time from the Leica Smartnet system via a CDMA modem (www.lecia-geosystems.com). At sites without network coverage (Humboldt, Bolinas, Morro and Tijuana), rover positions were received in real time from a Leica GS10 antenna base station via radio link. When using the base station, we adjusted...
Abstract (from Ecological Society of America): Tree mortality is an important outcome of many forest fires. Extensive tree injuries from fire may lead directly to mortality, but environmental and biological stressors may also contribute to tree death. However, there is little evidence showing how the combined effects of two common stressors, drought and competition, influence post‐fire mortality. Geographically broad observations of three common western coniferous trees subjected to prescribed fire showed the likelihood of post‐fire mortality was related to intermediate‐term (10 yr) pre‐fire average radial growth, an important component of tree vigor. Path analysis showed that indices of competition and drought...
thumbnail
We used WARMER, a 1-D cohort model of wetland accretion (Swanson et al., 2014), which is based on Callaway et al. (1996), to examine the effects of three SLR projections on future habitat composition at each study site. Each cohort in the model represents the total organic and inorganic matter added to the soil column each year. WARMER calculates annual elevation changes relative to MSL based on projected changes in relative sea level, subsidence, inorganic sediment accumulation, aboveground and belowground organic matter inputs, soil compaction, and organic matter decomposition for a representative marsh area. Cohort density, a function of soil mineral, organic, and water content, is calculated at each time step...
thumbnail
This dataset includes the cover of leguminous trees (Prosopis velutina, Parkinsonia microphylla, Parkinsonia florida) in 1989, 1995, 1999, 2005, and 2009 across southern Arizona. Cover was determined using sub-pixel classifications of two Landsat scenes from path 36, row 38 (centered on latitude: 31.7470, longitude: -111.3981) and path 37, row 38 (31.7470, -112.9431) that encompass Tucson, AZ.
thumbnail
Aspen forests are considered keystone ecosystems, meaning that loss of aspen habitat would result in negative impacts to numerous plant and animal species. Aspen also provide important economic and social benefits, including drawing tourists, serving as potential fire breaks, improving local economies, and providing forage for wildlife and livestock. Ecologically-valuable aspen forests are considered at risk in many areas of the western U.S., but especially in lower-elevation areas. Risks to aspen include climate-change and past land use. The effects of drought and browsing animals (that eat young aspen) are often more severe for lower-elevation aspen and can threaten aspen forest health and long-term persistence....
thumbnail
In the North Central U.S., drought is a dominant driver of ecological, economic, and social stress. Drought conditions have occurred in the region due to lower precipitation, extended periods of high temperatures and evaporative demand, or a combination of these factors. This project aimed to improve our understanding of drought in the North Central region and determine what future droughts might look like over the 21st century, as climate conditions change. Researchers evaluated, with the intent to improve, available and emerging data on climate conditions that influence drought (such as changes in temperature, precipitation, evaporative demand, snow and soil moisture), as well as datasets related to the surface...
thumbnail
In the Pacific Northwest, cold-water species like salmon are important for recreational sport fishing as well as for commercial fish production. However, climate change is causing lower and warmer summer stream flows that could decimate these fish populations. Aquatic cold-water habitats are further threatened by stormwater runoff, which moves from streets to storm drains and then is often discharged into cold-water rivers and streams. The urban heat island effect (when cities and urban areas are warmer than surrounding rural areas) may heat the temperature of the runoff and if the runoff is very warm, it could tip salmon habitat into fatal conditions. However, specifically how urban warming – or cooling, such...
thumbnail
On Hawai‘i’s mountains, cloud droplets, propelled by strong winds, are deposited on plants, where they accumulate and drip to the ground, adding water over and above that supplied by rainfall. Prior studies show that the amount of intercepted cloud water is substantial, and variable from place to place. Estimates of the spatial patterns of cloud water interception (CWI), the fog-related effects on plants, and the contributions of fog to groundwater recharge and surface water flows are needed to better understand the water cycle and predict effects of climate change on water supply and ecosystems. We will make measurements of fog, wind, fog interception, soil moisture, and fog effects on plant water use and plant...
thumbnail
Forests west of the Cascade Crest in Oregon and Washington have been shaped by infrequent but severe wildfires that historically occurred at intervals spanning several centuries. Since the mid-1900s, relatively few fires have occurred in the region, resulting in a general lack of understanding of the drivers of these fires, the impacts on ecosystems, and possible management responses. Most of the current regional understanding of fire regimes and impacts instead comes from the drier, interior forests. However, recent fire events between 2014 and 2018 (e.g., the Norse Peak Fire in Washington) have raised concern among land managers in the Pacific Northwest about fire risk in a warming climate. This project will...
thumbnail
Droughts in the Hawaiian Islands can enhance wildfire risk, diminish freshwater resources, and devastate threatened and endangered species on land and in nearshore ecosystems. During periods of drought, cloud-water interception, or fog drip (the process by which water droplets accumulate on the leaves and branches of plants and then drip to the ground) in Hawai‘i’s rain forests may play an important role in providing moisture for plants, reducing wildfire risk within the fog zone, and contributing to groundwater recharge (the process by which water moves downward from the surface through the ground to the groundwater table) that sustains water flow in streams during dry periods. Estimates of the changes in water...
This project facilitated the engagement of the North Central Climate Adaptation Science Center’s (NC CASC) Climate Foundational Science Area (FSA) to identify and address the physical climate science challenges that are important for ecologists and natural resource managers in the NC CASC region, as well as meet their needs for climate information to assess impacts to their desired system and develop strategies for effective climate adaptation. A drought index called the Landscape Evaporative Response Index (LERI) was developed to provide a near real-time assessment of soil moisture conditions across the Contiguous United States (CONUS) based on satellite observations. This projects also supported development of...
This project supported the activities of the Climate Foundational Science Area (FSA) at the North Central Climate Science Adaptation Center (NC CASC). These activities included foundational research into drought processes relevant to the different climatic zones and ecosystems in the NC CASC region. We examined role of the atmospheric thirst for water from the land surface (aka, Evaporative Demand), how that may change during the 21st century and affect drought related risks in the future. We developed and did outreach with a drought index called the Evaporative Demand Drought Index (EDDI), that solely looks at the Evaporative Demand parameter, for its drought early warning potential, its ability to capture flash...
The purpose of this project was to enhance the knowledge of local tribal environmental professionals related to planning for the increased frequency of weather events as a result of climate change. Beyond expanding knowledge, the objective of this workshop introduce the Division of Regional and City Planning faculty and students to the planning needs of tribal communities related to climate change. As a secondary objective, the grantees sought to lay a foundation for building relationships with the regional BIA offices and the tribal environmental professionals for future planning and research activities.
thumbnail
Surrounded by saltwater, human and natural communities on the Hawaiian Islands depend upon the freshwater supplied by rainfall for survival. Climate change will likely alter rainfall timing and intensity, but global climate models cannot capture the fine-scale dynamics of local rainfall, making future rainfall predictions for the islands uncertain. For this project, scientists used a technique called statistical downscaling (combining coarse-scale climate models with local historical data) to generate high-resolution maps showing seasonal rainfall change projections for Hawaiʻi over the course of this century. Results suggest that Hawaiʻi’s climate will become drier overall in the second half of the century, but...
thumbnail
Floodplain forests along the Upper Mississippi River are heavily managed but understudied systems that provide critical ecosystem services, including habitat for endangered species. Impacts of a changing climate, such as warmer winters and wetter summers with extreme precipitation events, are already influencing hydrologic patterns in these ecosystems, including altering the duration, frequency, and timing of floods. These changes bring numerous challenges to floodplain forest managers. This project will leverage an already established research-management partnership to develop knowledge and tools to inform sustainable decision making. In this project, researchers will utilize multiple sources of “big data” to...
thumbnail
The Wind River Indian Reservation in west-central Wyoming is home to the Eastern Shoshone and Northern Arapaho tribes, who reside near and depend on water from the streams that feed into the Wind River. In recent years, however, the region has experienced frequent severe droughts, which have impacted tribal livelihoods and cultural activities. Scientists with the North Central Climate Science Center at Colorado State University, the National Drought Mitigation Center at the University of Nebraska-Lincoln, and several other university and agency partners are working closely with tribal water managers to assess how drought affects the reservation, integrating social, ecological, and hydro-climatological sciences...


map background search result map search result map Developing High-Resolution Rainfall Change Scenarios for the Hawaiian Islands Foundational Science Area: Developing Climate Change Understanding and Resources for Adaptation in the North Central U.S. The Wind River Indian Reservation’s Vulnerability to the Impacts of Drought and the Development of Decision Tools to Support Drought Preparedness Cloud Water Interception in Hawai‘i - Part 1: Understanding the Impact of Fog on Groundwater and Ecosystems and Future Changes to these Processes Mad River, Tidal Marsh Elevation Points Newport, Tidal Marsh Elevation Points Morro Bay, California: Tidal Marsh Bathymetry Digital Elevation Models SLR Projections, Humboldt, Calif., 2010-2060 SLR Projections, Newport, Calif., 2070-2110 Shifts in Leguminous tree in southern Arizona, 1989 - 2009 Understanding the Relationship Between Urban Trees, Stormwater Runoff, and Cold-Water Streams in a Changing Climate Effects of Drought on Soil Moisture and Water Resources in Hawai‘i Forest Fires in Western Cascadia: Evaluating Drivers and Impacts to Inform Climate-Adaptive Management Responses Vulnerability of Lower-Elevation Aspen Forests to Altered Fire and Climate Dynamics: Assessing Risks and Developing Actionable Science Characterizing Climate-Driven Changes to Flood Events and Floodplain Forests in the Upper Mississippi River to Inform Management Newport, Tidal Marsh Elevation Points SLR Projections, Newport, Calif., 2070-2110 Mad River, Tidal Marsh Elevation Points SLR Projections, Humboldt, Calif., 2010-2060 Morro Bay, California: Tidal Marsh Bathymetry Digital Elevation Models Understanding the Relationship Between Urban Trees, Stormwater Runoff, and Cold-Water Streams in a Changing Climate The Wind River Indian Reservation’s Vulnerability to the Impacts of Drought and the Development of Decision Tools to Support Drought Preparedness Shifts in Leguminous tree in southern Arizona, 1989 - 2009 Effects of Drought on Soil Moisture and Water Resources in Hawai‘i Cloud Water Interception in Hawai‘i - Part 1: Understanding the Impact of Fog on Groundwater and Ecosystems and Future Changes to these Processes Developing High-Resolution Rainfall Change Scenarios for the Hawaiian Islands Forest Fires in Western Cascadia: Evaluating Drivers and Impacts to Inform Climate-Adaptive Management Responses Characterizing Climate-Driven Changes to Flood Events and Floodplain Forests in the Upper Mississippi River to Inform Management Vulnerability of Lower-Elevation Aspen Forests to Altered Fire and Climate Dynamics: Assessing Risks and Developing Actionable Science Foundational Science Area: Developing Climate Change Understanding and Resources for Adaptation in the North Central U.S.