Skip to main content
Advanced Search

Filters: Tags: Earth (X)

78 results (35ms)   

Filters
View Results as: JSON ATOM CSV
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
EXPO-CAT is a catalog of human exposure to discrete levels of shaking intensity, obtained by correlating Atlas ShakeMaps with a global population database. Combining this population exposure dataset with historical earthquake loss data provides a useful resource for calibrating loss methodologies against a systematically-derived set of ShakeMap hazard outputs. EXPO-CAT is derived from two key datasets: the PAGER-CAT earthquake catalog and the Atlas of ShakeMaps. PAGER-CAT provides accurate earthquake source information necessary to compute reliable ShakeMaps in the Atlas. It also contributes loss information (i.e., number of deaths and injuries) from historical events. Using historical earthquakes in the Atlas and...
thumbnail
This data bundle contains some of the inputs, all of the processing instructions and all outputs from a single VisTrails/SAHM workflow. This model specifically includes location data for Bombina orientalis and random background locations. Predictors include climatic, topographic, and land cover rasters. The three bundle documentation files are: 1) '_archive_bundle_metadata.xml' which contains FGDC metadata describing the archive bundle. 2) '_archive_raster_inputs.csv' a list of the raster inputs that were used to generate these model results. These are not included in the archive bundle due to size constraints but are identified in this file as well as the metadata document. 3) '_archive_workflow_Final runs.vt'...
thumbnail
Data includes cover and presence (within microsites and 13 m radius plots) of three exotic annual grass, Bromus tectorum, Taeniatherum caput-medusae, and Ventenata dubia and presence (within microsites) of four perennial bunchgrass species (Agropyron cristatum, Pseudoroegneria spicata, Poa secunda, Elymus elymoides) within the first five years after the 2015 Soda wildfire. Additional landscape and weather covariates hypothesized to influence landscape resistance to invasion are included.
thumbnail
The U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center in Sioux Falls, SD developed a cloud validation dataset from 48 unique Landsat 7 Collection 2 images. These images were selected at random from the Landsat 7 SLC-On archive from various locations around the world. While these validation images were subjectively designed by a single analyst, they provide useful information for quantifying the accuracy of clouds flagged by various cloud masking algorithms. Each mask is provided in GeoTIFF format, and includes all bands from the original Landsat 7 Level-1 Collection 2 data product (COG GeoTIFF), and its associated Level-1 metadata (MTL.txt file). The interpretation for the pixel...
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
The Global Vs30 Server allows a user to select from a map or input a rectangular region of interest. It then provides (optionally) a Vs30 grid in ASCII or GMT grid format, and a JPEG Vs30 map. Wald et al. (2004) first, and Wald and Allen (BSSA, 2007, in press), more fully, describe a methodology for deriving maps of seismic site conditions using topographic slope as a proxy. Vs30 measurements (the average shear-velocity down to 30 m) are correlated against topographic slope to develop two sets of coefficients for deriving Vs30: one for active tectonic regions that possess dynamic topographic relief, and one for stable continental regions where changes in topography are more subdued.
This data set contains imagery from the National Agriculture Imagery Program (NAIP). The NAIP program is administered by USDA FSA and has been established to support two main FSA strategic goals centered on agricultural production. These are increase stewardship of America's natural resources while enhancing the environment, and to ensure commodities are procured and distributed effectively and efficiently to increase food security. The NAIP program supports these goals by acquiring and providing ortho imagery that has been collected during the agricultural growing season in the U.S. The NAIP ortho imagery is tailored to meet FSA requirements and is a fundamental tool used to support FSA farm and conservation programs....
thumbnail
PEST++ Version 5 software release. This release includes ASCII format C++11 source code, precompiled binaries for windows 10 and linux, and inputs files the example problem shown in the report
thumbnail
This dataset tabulates summary statistics for estimates of amounts of copper in undiscovered porphyry copper deposits by world region and for the globe. Data re reported by region, by aggregation method (randomized and sorted), and by selected statistics. These include quantiles, means, standard deviations, standard error of the mean , and Upper and Lower 95% of the mean.
thumbnail
OpenSHA is an effort to develop object-oriented, web- & GUI-enabled, open-source, and freely available code for conducting Seismic Hazard Analyses (SHA). Our goal is to provide a framework where any arbitrarily complex (e.g., physics based) earthquake-rupture forecast, ground-motion, or engineering-response model can “plug in” for analysis without having to change what’s being plugged into.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
A Finite Fault is a modeled representation of the spatial extent, amplitude and duration of fault rupture (slip) of an earthquake, and is generated via the inversion of teleseismic body waveforms and long period surface waves. It may indicate that a location of major fault-slip and source of seismic energy has occurred at a significant distance from the earthquake epicenter, which is the location on the fault where the earthquake rupture nucleated. For many earthquakes, the preferred model represents the distribution of slip on one of the two alternative fault-planes that are implied by the earthquake moment-tensor. For some earthquakes, the seismographic data are fit equally well by models involving slip on either...
thumbnail
The DYFI system collects observations from people who felt an earthquake and then maps out the extent of shaking and damage they reported. The ComCat online Search interface allows users to select query criteria that return events with DYFI data and products.


map background search result map search result map FSA 10:1 NAIP Imagery m_3410253_sw_13_1_20140903_20141201 3.75 x 3.75 minute JPEG2000 from The National Map Summary statistics by region USGS 1:24000-scale Quadrangle for Earth, TX 1963 Slab2 - A Comprehensive Subduction Zone Geometry Model, Calabria Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Cotabato Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Himalaya Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Ryukyu Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Puysegur Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Solomon Islands Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Sulawesi Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Vanuatu Region Presence and cover of exotic annual and perennial grass species during five years post-fire on the Soda Wildfire FSA 10:1 NAIP Imagery m_3410253_sw_13_1_20140903_20141201 3.75 x 3.75 minute JPEG2000 from The National Map USGS 1:24000-scale Quadrangle for Earth, TX 1963 Presence and cover of exotic annual and perennial grass species during five years post-fire on the Soda Wildfire Slab2 - A Comprehensive Subduction Zone Geometry Model, Cotabato Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Calabria Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Sulawesi Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Puysegur Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Solomon Islands Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Vanuatu Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Himalaya Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Ryukyu Region Summary statistics by region