Skip to main content
Advanced Search

Filters: Tags: Ecosystems (X) > Date Range: {"choice":"year"} (X) > partyWithName: John Wesley Powell Center for Earth System Analysis and Synthesis (X)

8 results (167ms)   

View Results as: JSON ATOM CSV
thumbnail
Sea-level rise and storms cause major changes on coastal landscapes, including shifts in elevation, ecosystem type (for example, dunes and tidal wetlands), soils, and plant communities. Because these changes can have impacts on human communities, the local economy, and ecosystems, understanding how, when, and why these changes occur can be important for informing policy and natural resource management decisions. However, much is still unknown in our understanding of and ability to forecast coastal landscape change, and many current modeling approaches do not include important feedbacks between the physical landscape and the species inhabiting it. Examples of these types of feedbacks include the rapid development...
thumbnail
Despite the proven efficacy of geothermal energy as a city-scale heating and cooling resource, the relative newness of most city-scale applications using diverse technologies has resulted in limited widespread adoption. We aim to develop authoritative information suitable for city-managers and other decision-makers. Geothermal resources are ubiquitous and diverse, with technologies available both for harvesting ambient heat or for storing thermal energy. These local low-carbon, baseload energy sources provide resilience, security, and jobs. The project team proposes to accelerate understanding and possibly energy-solution adoption by developing an international systematic nomenclature to describe the range of...
thumbnail
A revolution is underway in seismology that transforms fiber-optic cables into arrays of thousands of seismic sensors. Compared to the traditional monitoring networks using inertial seismometers, the fiber-optic approach can increase the spatial data density by orders of magnitude and enable data processing methodologies that require a high-fidelity wavefield. The Working Group aims to advance the USGS, along with several academic and industry partners, towards effective utilization of fiber-optic sensing techniques to understand earthquake hazards and improve monitoring and real-time warning systems. We will conduct synthesis studies that demonstrate the potential gains for various applications, including earthquake...
Climate change is expected to have significant effects on the phenology of vectors of arthropod-borne diseases, particularly mosquitoes. However, forecasting the direction and magnitude of future phenological shifts requires a more detailed understanding of the climate drivers of mosquito phenology. Addressing this knowledge gap is particularly salient for mosquitoes, as they have the potential to affect human health through transmission of zoonotic disease. While models based on climate and mosquito life history have been created at local or regional scales, national-scale predictions of the timing of mosquito activity are not readily available for the U.S. Our workshop proposes to synthesize primary data on mosquito...
thumbnail
Terrestrial evapotranspiration (ET), the second-largest component of the terrestrial water cycle, links water, energy, and carbon cycles and influences the productivity and health of our ecosystems. Despite the importance of ET, the dynamics of ET across a spectrum of spatiotemporal scale and their controls are uncertain. During an international ET workshop held in November 2021 by AmeriFlux, the scientific community identified key challenges to improve our understanding of ET dynamics. Participants underscored the need for an integrated understanding of ET across the different research disciplines: in-situ measurements, remote sensing, and modeling. Here, we propose the synthesis of the three research areas to...
thumbnail
Despite the critical services freshwater systems provide, freshwater biodiversity has been vastly under-studied compared to terrestrial and marine biomes. In fact, systematic compilations of freshwater zooplankton are surprisingly rare despite the critical roles zooplankton play in regulating and supporting ecosystem services, serving as key indicator species, and consequently, influencing emergent system properties such as water quality and food web structure. We have compiled and harmonized the most temporally and spatially extensive freshwater zooplankton dataset available to date, designed to seamlessly integrate with a suite of in-lake and remote sensing data and modeling products. Our international team will...
thumbnail
Subsurface preferential flow (PF = water bypassing the soil matrix) provides rapid flowpaths for water and any substances transported with it, thereby profoundly impacting the recharge of aquifers, the spreading of contaminants, the health of the soil, and the functioning of ecosystems. It involves a complexity of processes that are poorly understood to the degree that current science provides no reliable way to predict its occurrence and magnitude. This effort will address the fundamental question of where and when PF occurs, taking advantage of two recent scientific developments: availability of high frequency (at least every 30 minutes), multi-depth soil moisture data suitable to detect preferential flow events...
thumbnail
Our ability to effectively manage natural resources is founded in an understanding of how our actions and the environment influence populations, communities, and ecosystems. Current practices use monitoring data from the past to determine key ecological relationships and make predictions about the future with the assumption that those relationships will remain constant. However, many natural systems are undergoing rapid changes due to external factors including climate change, urbanization, and energy development, leading to a situation in which our observations of the past are poor predictors of the future. Ignoring such changes could lead to management decisions that are sub-optimal at best or detrimental at worst....