Skip to main content
Advanced Search

Filters: Tags: FY 2012 (X) > Types: OGC WMS Layer (X)

24 results (48ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
WGFD has a quantity of GPS-based animal movement data available for processing. In order to fully integrate this data into existing statewide migration route data layers and/or to use it to develop modeled migration corridor data layers, it must be reviewed, organized appropriately, analyzed, modeled and finally structured to allow seamless integration. The objective of this proposal is to review and examine the data, organize it meaningfully, and present it initially in combination with existing migration routes in order to represent generalized big game migration corridors across the landscapes of Wyoming. This is anticipated as a “first look” product, and serve as a basis for future work to more fully analyze...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2010, 2012, CO-2, CO-3, CO-3, All tags...
thumbnail
A limited amount of valid scientific information about global climate change and its detrimental impacts has reached the public and exerted a positive impact on the public policy process or future planning for adaptation and mitigation. This project was designed to address this limitation by bringing together expertise in the social and communication sciences from targeted academic institutions affiliated with the Department of the Interior’s Climate Science Centers (CSCs) through a workshop. The project team brought together expertise in the social and communication sciences from targeted academic institutions, particularly experts and scholars who are affiliated with the nation’s CSCs, by means of an invited...
thumbnail
Coastal wetlands and the many beneficial services they provide (e.g., purifying water, buffering storm surge, providing habitat) are changing and disappearing as a result of sea-level rise brought about by climate change. Scientists have developed a wealth of information and resources to predict and aid decision-making related to sea-level rise. However, while some of these resources are easily accessible by coastal managers, many others require more expert knowledge to understand or utilize. The goal of this project was to collate science and models pertaining to the effects of sea-level on coastal wetlands into a format that would be accessible and useful to resource managers. Researchers conducted training sessions...
thumbnail
Assessing the impact of flow alteration on aquatic ecosystems has been identified as a critical area of research nationally and in the Southeast U.S. This project aimed to address the Ecohydrology Priority Science Need of the SE CSC FY2012 Annual Science Work Plan by developing an inventory and evaluation of current efforts and knowledge gaps in hydrological modeling for flow-­‐ecology science in global change impact studies across the Southeast. To accomplish this goal, we completed a thorough synthesis and evaluation of hydrologic modeling efforts in the Southeast region (including all states of the Southeastern Association of Fish and Wildlife Agencies (SEAFWA) including Alabama, Arkansas, Florida, Georgia, Kentucky,...
thumbnail
Greater sage-grouse genetic connectivity is essential to the species persistence across the Great Northern landscape; without such connectivity the greater sage-grouse may suffer the same fate as many other related species of grouse, which disappeared from the middle and eastern portion of the United States due to loss of habitat coupled with inbreeding depression. To prevent isolation in the face of energy development and other landscape changes it is essential that we evaluate both fine-scale connectivity and assign relative importance to different leks (breeding populations) on the landscape. This massive task cannot be accomplished with existing tools and maps; fortunately, advanced molecular genomic analyses...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2012, AZ-1, Academics & scientific researchers, Alberta, Arizona, All tags...
thumbnail
Biodiversity in stream networks is threatened globally by interactions between habitat fragmentation and altered hydrologic regimes. In the Great Plains of North America, stream networks are fragmented by 19,000 anthropogenic barriers, and flow regimes are altered by surface water retention and groundwater extraction. We documented the distribution of anthropogenic barriers and dry stream segments in five basins covering the central Great Plains to assess effects of broad-scale environmental change on stream fish community structure and distribution of reproductive guilds. We used an information theoretic approach to rank competing models in which fragmentation, discharge magnitude, and percentage of time streams...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2012, CATFISHES/MINNOWS, CO-01, CO-02, CO-03, All tags...
thumbnail
The range-wide plan (RWP) has been developed in response to concerns about lesser prairie-chicken (LPC) habitat threats which may be impacting LPC populations, and the proposed listing under the Endangered Species Act (ESA). Along with the existing conservation efforts already being implemented, as described in the RWP, the supporting WAFWA Conservation Agreement (WCA) represents another mechanism to implement conservation to benefit LPC. The WCP represents an opportunity to enroll participants who agree to avoid, minimize and mitigate actions which may be detrimental to LPC. Landowners may enroll properties to be managed for the benefit of LPC. Properties may generate credits for mitigation. When complete avoidance...
thumbnail
Climate change is expected to alter stream temperature and flow regimes over the coming decades, and in turn influence distributions of aquatic species in those freshwater ecosystems. To better anticipate these changes, there is a need to compile both short- and long-term stream temperature data for managers to gain an understanding of baseline conditions, historic trends, and future projections. Unfortunately, many agencies lack sufficient resources to compile, conduct quality assurance and control, and make accessible stream temperature data collected through routine monitoring. Yet, pooled data from many sources, even if temporally and spatially inconsistent, can have great value both in the realm of stream temperature...
thumbnail
In the Southeast, where rapid human development is increasingly dividing natural areas, habitat fragmentation and loss threaten the health and even genetic viability of wildlife populations, and interrupt migration routes. Climate change is projected to exacerbate fragmentation by further disrupting landscapes. To make matters worse, it is also expected to shift the range of many species, forcing animals capable of adapting by moving to expand into new areas to find more suitable temperatures and adequate food supplies – a challenge made difficult, if not impossible, by disconnected landscapes. Maintaining connectivity between habitats is a key strategy for conserving wildlife populations into the future, and sound...
thumbnail
A number of large-scale mapping projects have been completed in the U.S., and several cover all or some parts of the footprint of the Northeast Climate Science Center (NE CSC). These include maps by the Southeast GAP Analysis (SEGAP) program, the national LANDFIRE program, NatureServe, and The Nature Conservancy. These mapping projects represent a major step forward in describing the current extent of ecosystems on the landscape, and provide resource management agencies and organizations with unprecedented access to spatial information on these systems. In a number of cases, the ranges of these maps overlap. As a result, staff of resource management agencies and organizations are faced with trying to determine how...
thumbnail
The Arkansas River Shiner (ARS), Notropis girardi, is a federally threatened minnow that now occurs natively in modest numbers only in the South Canadian River, following decades of range contraction and population losses. The remaining populations are at increasing risk as global change is expected to impact the upper and middle South Canadian River with a rise in temperature as much as 4-6 F and a decrease in precipitation from 10 to 35 % in this century. The primary objective of this project was to evaluate potential effects of habitat and environmental change on Arkansas River shiners by examination of habitat use and availability at several spatial scales using both historical and recently-collected data from...
thumbnail
This project addressed regional climate change effects on aquatic food webs in the Great Lakes. We sought insights by examining Lake Erie as a representative system with a high level of anthropogenic impacts, strong nutrient gradients, seasonal hypoxia, and spatial overlap of cold- and cool-water fish guilds. In Lake Erie and in large embayments throughout the Great Lakes basin, this situation is a concern for fishery managers, as climate change may exacerbate hypoxia and reduce habitat volume for some species. We examined fish community composition, fine-scale distribution, prey availability, diets, and biochemical tracers for dominant fishes from study areas with medium-high nutrient levels (mesotrophic, Fairport...
thumbnail
The number of fish collected in routine monitoring surveys often varies from year to year, from lake to lake, and from location to location within a lake. Although some variability in fish catches is expected across factors such as location and season, we know less about how large-scale disturbances like climate change will influence population variability. The Laurentian Great Lakes in North America are the largest group of freshwater lakes in the world, and they have experienced major changes due to fluctuations in pollution and nutrient loadings, exploitation of natural resources, introductions of non-native species, and shifting climatic patterns. In this project, we analyzed established long-term data about...
thumbnail
Tribal communities are especially vulnerable to the effects of climate change because of their reliance on the natural environment to sustain traditional activities and their limited resources to respond to climate change impacts. At the same time, tribes have valuable traditional knowledge that can aid regional efforts to address climate change. There were two overarching goals of this project: The first was to build partnerships between South Central Climate Science Center (SC CSC) researchers and tribal communities, linking tribes with climate change tools and resources and developing a model that could be replicated in other regions. The second goal was to document tribal viewpoints on climate change impacts...
thumbnail
Submersed aquatic vegetation (SAV) communities are highly productive ecosystems that provide significant ecological benefits to coastal areas, including essential calories for wintering waterfowl. However, the potential effects of sea-level rise is posing new questions about the future availability of SAV for waterfowl and other coastal wildlife. Of primary concern is the fact that rising seas have the potential to increase salinities in fresh and brackish marshes on the Gulf of Mexico’s coast, changing the distribution and composition of SAV communities, and affecting valuable waterfowl habitat and food resources. Not enough is known about the relationship between salinity and SAV to predict how this important...
thumbnail
Climate change is likely to have many effects on natural ecosystems in the Southeast U.S. While there is information available to conservation managers and ecologists from the global climate models (GCMs), this information is at too coarse a resolution for use in vulnerability assessments and decision making. To better assess how climate change could affect multiple sectors, including ecosystems, climatologists have created several downscaled climate projections that contain information from GCMs translated to regional or local scales. There are a number of techniques that can be used to create downscaled climate projections, and the number of available downscaled climate projections present challenges to users...
thumbnail
The Northeast United States and Atlantic Canada share many of the same types of forests, wetlands, and natural communities, and from a wildlife perspective the region is one contiguous forest. However, resources are classified and mapped differently on the two sides of the border, creating challenges for habitat evaluation, species modeling, and predicting the effects of climate change. To remedy this, ecologists from The Nature Conservancy collaborated with a committee of scientists from various Canadian institutions to produce the first international map of terrestrial habitats for northeast North America. The project used extensive spatial data on geology, soils, landforms, wetlands, elevation and climate. Additionally,...
thumbnail
This project addressed regional climate change effects on aquatic food webs in the Great Lakes. We sought insights by examining Lake Erie as a representative system with a high level of anthropogenic impacts, strong nutrient gradients, seasonal hypoxia, and spatial overlap of cold- and cool-water fish guilds. In Lake Erie and in large embayments throughout the Great Lakes basin, this situation is a concern for fishery managers, as climate change may exacerbate hypoxia and reduce habitat volume for some species. We examined fish community composition, fine-scale distribution, prey availability, diets, and biochemical tracers for dominant fishes from study areas with medium-high nutrient levels (mesotrophic, Fairport...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2012, Academics & scientific researchers, CSC, Climate Change, Conservation NGOs, All tags...
thumbnail
To date, hydrological and ecological models have been developed independently from each other, making their application particularly challenging for interdisciplinary studies. The objective of this project was to synthesize and evaluate prevailing hydrological and ecological models in the South-Central U.S., particularly the southern Great Plains region. This analysis aimed to identify the data requirements and suitability of each model to simulate stream flow while addressing associated changes in the ecology of stream systems, and to portray climate variability and uncertainty. The results and deliverables of this project are expected to include a comprehensive, updated, and systematic report on recent developments...


map background search result map search result map Understanding the Varying Responses of Fish Populations to Future Climate Understanding How Climate Change Will Impact Aquatic Food Webs in the Great Lakes Developing a Comprehensive Terrestrial Habitat Map for the Northeastern U.S. and Atlantic Canada to Inform Planning Decisions Assessing the Potential Impact of Sea-Level Rise on Submersed Aquatic Vegetation and Waterfowl in the Northern Gulf of Mexico Building Capacity within the CSC Network to Effectively Deliver and Communicate Science to Resource Managers and Planners Inter-Tribal Workshops on Climate Change in the Central U.S. Analyzing and Communicating the Ability of Data and Models to Simulate Streamflow and Answer Resource Management Questions Making Terrestrial and Wetland Habitat Maps Useful for Adaptation Planning NorEaST: A Tool to Understand the Responses of Fish to Changes in Stream Temperature Understanding Habitat Connectivity to Inform Conservation Decisions Evaluating Downscaled Climate Models for Projecting Future Changes in the Southeast Evaluating the Use of Models for Projecting Future Water Flow in the Southeast A Handbook for Resource Managers to Understand and Utilize Sea-Level Rise and Coastal Wetland Models Historic and Current Habitat Use by Arkansas River Shiner in the South Canadian River in Central Oklahoma as Affected by River Flow: Predictions for Habitat Under Future Climate Scenarios Range-wide Lesser Prairie-Chicken Management Plan Development Providing High Resolution Connectivity Maps for Greater Sage-grouse in the Great Northern Landscape Using State of the Art Genomics State of Wyoming Geospatial Data Management, Information Sharing and Preparation for Decision Support System Development - Migration Corridors Range-wide Lesser Prairie Chicken Spatial Targeting Tool for Conservation Delivery Conservation Priorities for Great Plains Fish Communities Based on Riverscape Connectivity and Genetic Integrity of Populations Understanding How Climate Change will Impact Aquatic Food Webs in the Great Lakes Understanding How Climate Change Will Impact Aquatic Food Webs in the Great Lakes Understanding How Climate Change will Impact Aquatic Food Webs in the Great Lakes Providing High Resolution Connectivity Maps for Greater Sage-grouse in the Great Northern Landscape Using State of the Art Genomics Assessing the Potential Impact of Sea-Level Rise on Submersed Aquatic Vegetation and Waterfowl in the Northern Gulf of Mexico State of Wyoming Geospatial Data Management, Information Sharing and Preparation for Decision Support System Development - Migration Corridors Historic and Current Habitat Use by Arkansas River Shiner in the South Canadian River in Central Oklahoma as Affected by River Flow: Predictions for Habitat Under Future Climate Scenarios Range-wide Lesser Prairie Chicken Spatial Targeting Tool for Conservation Delivery Range-wide Lesser Prairie-Chicken Management Plan Development Developing a Comprehensive Terrestrial Habitat Map for the Northeastern U.S. and Atlantic Canada to Inform Planning Decisions Conservation Priorities for Great Plains Fish Communities Based on Riverscape Connectivity and Genetic Integrity of Populations Understanding the Varying Responses of Fish Populations to Future Climate Building Capacity within the CSC Network to Effectively Deliver and Communicate Science to Resource Managers and Planners Analyzing and Communicating the Ability of Data and Models to Simulate Streamflow and Answer Resource Management Questions Inter-Tribal Workshops on Climate Change in the Central U.S. Evaluating Downscaled Climate Models for Projecting Future Changes in the Southeast A Handbook for Resource Managers to Understand and Utilize Sea-Level Rise and Coastal Wetland Models NorEaST: A Tool to Understand the Responses of Fish to Changes in Stream Temperature Understanding Habitat Connectivity to Inform Conservation Decisions Making Terrestrial and Wetland Habitat Maps Useful for Adaptation Planning Evaluating the Use of Models for Projecting Future Water Flow in the Southeast