Skip to main content
Advanced Search

Filters: Tags: Geomorphology (X) > Extensions: Shapefile (X)

167 results (36ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This data release contains tabular data (comma-separated-value files) of natural radiogenic isotopes of strontium, uranium, and thorium for samples of modern water, speleothems, associated with Fitton Cave, north central Arkansas, as well as rock that host the cave deposits. In addition, U-series ages (230Th/U dates and model 234U/238U dates) are calculated from those data for subsamples of speleothems. Stable isotopes of oxygen and carbon are reported for a subset of the stalagmite samples. Sample locations and descriptions as well as specific sub-sample imagery and narrative explanations are included as information supporting the analyses. Selected results are depicted as data plots in an accompanying Excel spreadsheet...
thumbnail
From September 2019 to October 2020 a stream sediment budget and sediment fingerprinting integrated study was conducted to quantify upland and stream corridor sources of suspended sediment and sediment-bound phosphorus using the Sediment Source Assessment Tool (SedSAT) methods with a suite of trace elements. Upland source samples were collected at 45 randomly selected sites in the watershed. Passive suspended-sediment samplers were installed at three sites and sampled monthly. Soft, fine-grained streambed sediment was collected if present at 18 rapid geomorphic assessment (RGA) sites. An inventory of bank erosion and soft-sediment deposition was also done at each of the 18 RGA sites, which were selected to represent...
thumbnail
This data release contains information on computed tomography (CT) images of a vibracore that was collected by the U.S. Geological Survey in 2019. A site next to the San Lorenzo River in Henry Cowell Redwoods State Park, California, was cored to understand the history of recent vertical incision and floodplain abandonment. The core was split into 3 segments after collection. Each segment was scanned using a Geotek Rotating X-ray CT (RXCT) System and CT reconstruction was performed using Geotek reconstruction software. Geotek CT_Quickview software was used to select a representative down-core orthogonal slice from each core segment and the Geotek AddRuler software was used to display core-lengths in each image. The...
This dataset includes a reference baseline used by the Digital Shoreline Analysis System (DSAS) to calculate rate-of-change statistics for the coastal bluffs at Barter Island, Alaska for the time period 1950 to 2020. This baseline layer serves as the starting point for all transects cast by the DSAS application and can be used to establish measurement points used to calculate bluff-change rates.
thumbnail
The U.S. Geological Survey (USGS), in cooperation with the National Marine Sanctuary Program of the National Oceanic and Atmospheric Administration (NOAA), has conducted seabed mapping and related research in the Stellwagen Bank National Marine Sanctuary (SBNMS) region since 1993. The interpretive datasets and source information presented here are for quadrangle 5, which is one of 18 similarly sized segments of the 3,700 square kilometer (km2) SBNMS region. The seabed of the SBNMS region is a glaciated terrain that is topographically and texturally diverse. Quadrangle 5 includes the shallow, rippled, coarse-grained sandy crest and upper eastern and western flanks of southern Stellwagen Bank, its fine-grained sandy...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Assateague Island, Assateague Island, Assateague Island National Seashore, Assateague Island National Seashore, Atlantic Ocean, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Atlantic Ocean, Barrier Island, Bayesian Network, CMHRP, Coastal Erosion, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Atlantic Ocean, Barrier Island, Bayesian Network, CMGP, Coastal Erosion, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Atlantic Ocean, Barrier Island, Bayesian Network, CMHRP, Coastal Erosion, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
This dataset contains cross-sectionally averaged flow metrics from measurements made with acoustic Doppler current profilers (ADCP) on the Missouri River near Wolf Point, MT during 2018 and 2019. Each data point represents a single-pass measurement with a boat-mounted ADCP driven from bank-to-bank along lateral transects spaced ~15 meters apart along a 33 kilometer reach. The measurements were collected as part of a bathymetric survey in which two USGS survey boats were each mounted with an ADCP and single beam echosounder that were deployed simultaneously. Cross-sectionally averaged flow metrics such as velocity, depth, and temperature along with the total measured discharge and starting coordinate of the measurement...
thumbnail
This product summarizes the collection and analysis of bed material sample grain size distribution collected from the Iron Gate, Copco, and J.C. Boyle Reservoirs located in Northern California and Southern Oregon on the Klamath River. Samples were collected on June 16, 2020 from cores (less than 1m depth) and processed for the full size distribution.
thumbnail
The Massachusetts Office of Coastal Zone Management (CZM) launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the Massachusetts coast. Seventy-six maps were produced in 1997 depicting a statistical analysis of shoreline change on ocean-facing shorelines from the mid-1800s to 1978 using multiple data sources. In 2001, a 1994 shoreline was added. More recently, in cooperation with CZM, the U.S. Geological Survey (USGS) delineated a new shoreline for Massachusetts using color aerial ortho-imagery from 2008 to 2009 and topographic lidar data collected in 2007. This update included a marsh shoreline, which was defined to be the tonal difference between low- and high-marsh seen in ortho-photos....
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Bourne, CMGP, Chatham, Coastal and Marine Geology Program, Duxbury, All tags...
This dataset consists of seven geomorphic variables attributed to standard river mile address points at 0.1 mile (160 m) intervals between Fort Peck Dam and the headwaters of Lake Sakakawea. The data illustrate the geomorphic variation in this 300-km segment of the Upper Missouri River and are indicative of channel complexity, thought to be an important influence on dispersal and retention of larval sturgeon.
thumbnail
Landforms along the Pacific, Gulf of Mexico, and Atlantic coastlines for the conterminous United States are attributed with the relative vulnerability of horizontal erosion due to sea-level rise to characterize coastal zone stability. The position and extent of landforms are geospatially indexed as line-events where these coastal zone features are intersected by the linear-referenced 2013 - 2014 U.S. Geological Survey National Hydrography Dataset Coastline, which corresponds to the National Oceanic and Atmospheric Administration (NOAA) 2013 - 2014 mean high water level datum delineated in intertidal zones open to oceans, behind barrier coasts in bays, lagoons, and estuaries, and sometimes where tidal currents reach...
thumbnail
Estuary geomorphic units delineated at a scale of 1:1500 using a combination of (a) 30 August 2012 0.15 meter resolution NPS Elwha PlaneCam aerial imagery; and (b) elevation-colored and hillshaded digital elevation models from USGS backpack/jetski topobathy surveys (28 August 2012) for areas < MHHW and aerial lidar surveys (17 October 2012) for elevations > MHHW.


map background search result map search result map Linear-referenced Geomorphology and Relative Vulnerability to Erosion at the 2013 – 2014 conterminous U.S. Gulf of Mexico National Hydrography Dataset Coastline Geomorphic habitat units derived from 2012 aerial imagery and elevation data for the Elwha River estuary, Washington Marsh shorelines of the Massachusetts coast from 2013-14 topographic lidar data shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Cedar Island, VA, 2014 DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Edwin B. Forsythe NWR, NJ, 2010 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Fire Island, NY, 2014–2015 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Parker River, MA, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Assateague Island, MD & VA, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Metompkin Island, VA, 2014 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Parramore Island, VA, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Smith Island, VA, 2014 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Wreck Island, VA, 2014 Offshore baseline generated to calculate bluff change rates for the north coast of Barter Island, Alaska Vibracore CT scans from the San Lorenzo River Cross-sectionally averaged flow metrics from ADCP measurements of the Missouri River downstream of Wolf Point, MT during 2018-2019 Bed material grain size distributions for surficial samples from Iron Gate, Copco, and J.C. Boyle Reservoirs Kinnickinnic River Geochemistry and Rapid Geomorphic Assessments, Waukesha County, Wisconsin Portion of the 1-meter (m) contours in quadrangle 5 of the Stellwagen Bank Survey Area offshore of Boston, Massachusetts based on bathymetry data collected by the U.S. Geological Survey from 1994-1996 Isotope analyses (234U/238U, 87Sr/86Sr, δ13C, and δ18O) and U-series disequilibrium ages for speleothem, water, and rock samples associated with Fitton Cave, Buffalo National River, Arkansas, USA Vibracore CT scans from the San Lorenzo River Geomorphic habitat units derived from 2012 aerial imagery and elevation data for the Elwha River estuary, Washington Offshore baseline generated to calculate bluff change rates for the north coast of Barter Island, Alaska shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Wreck Island, VA, 2014 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Cedar Island, VA, 2014 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Parramore Island, VA, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Metompkin Island, VA, 2014 Isotope analyses (234U/238U, 87Sr/86Sr, δ13C, and δ18O) and U-series disequilibrium ages for speleothem, water, and rock samples associated with Fitton Cave, Buffalo National River, Arkansas, USA Kinnickinnic River Geochemistry and Rapid Geomorphic Assessments, Waukesha County, Wisconsin points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Smith Island, VA, 2014 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Parker River, MA, 2014 Portion of the 1-meter (m) contours in quadrangle 5 of the Stellwagen Bank Survey Area offshore of Boston, Massachusetts based on bathymetry data collected by the U.S. Geological Survey from 1994-1996 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Assateague Island, MD & VA, 2014 Bed material grain size distributions for surficial samples from Iron Gate, Copco, and J.C. Boyle Reservoirs Marsh shorelines of the Massachusetts coast from 2013-14 topographic lidar data Linear-referenced Geomorphology and Relative Vulnerability to Erosion at the 2013 – 2014 conterminous U.S. Gulf of Mexico National Hydrography Dataset Coastline