Skip to main content
Advanced Search

Filters: Tags: Geomorphology (X) > partyWithName: Alaska Division of Geological & Geophysical Surveys (X)

298 results (269ms)   

View Results as: JSON ATOM CSV
thumbnail
This report is a summary of a LiDAR data collection over the community of Unalakleet, in the Norton Sound region of Alaska. The original data were collected on October 27, 2005 by AeroMetric, Inc., under contract by Rodney P. Kinney and Associates, Inc. The complete, classified LiDAR dataset was purchased by the State of Alaska Division of Geological & Geophysical Surveys in 2013 in support of coastal vulnerability mapping efforts. For the purposes of open access to LiDAR datasets in coastal regions of Alaska, this collection is being released as a Raw Data File with an open end-user license.
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired LiDAR (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. LiDAR data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In support of geologic mapping and hazards evaluation in and near Whittier, Alaska, the Division of Geological & Geophysical Surveys (DGGS) acquired, and is making publicly available, lidar (light detection and ranging) data for an area along Passage Canal, Portage Lake, and Portage Glacier Highway. The lidar data, acquired and processed by Watershed Sciences, Inc. (WSI) consist of continuous coverage encompassing an area extending from Portage Lake eastward to Logging Company Bay in Passage Canal in the Seward D-4, D-5, and D-6 1:63,360-scale quadrangles. Lidar data collected below 1,600 ft (488 m) elevation have a minimum average pulse density of 8 pulses/square meter; above 1,600 ft (488 m) data were collected...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...


map background search result map search result map High-resolution lidar data for infrastructure corridors, Mount Hayes Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Big Delta Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Fairbanks Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Fairbanks Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Bettles Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Tanana Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Wiseman Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Livengood Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Healy Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Talkeetna Mountains Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Talkeetna Mountains Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Talkeetna Mountains Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Gulkana Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Gulkana Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Gulkana Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Valdez Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Chandalar Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Chandalar Quadrangle, Alaska High-resolution lidar data for the Whittier area, Passage Canal, and Portage Lake, Alaska LiDAR data for Unalakleet, Alaska, collected in October 27, 2005 LiDAR data for Unalakleet, Alaska, collected in October 27, 2005 High-resolution lidar data for the Whittier area, Passage Canal, and Portage Lake, Alaska High-resolution lidar data for infrastructure corridors, Mount Hayes Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Big Delta Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Fairbanks Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Fairbanks Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Bettles Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Tanana Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Wiseman Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Livengood Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Healy Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Talkeetna Mountains Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Talkeetna Mountains Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Talkeetna Mountains Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Gulkana Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Gulkana Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Gulkana Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Valdez Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Chandalar Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Chandalar Quadrangle, Alaska