Skip to main content
Advanced Search

Filters: Tags: Geomorphology (X)

2,157 results (9ms)   

View Results as: JSON ATOM CSV
thumbnail
Geomorphometry for Streams and Floodplains in the Chesapeake and Delaware Watersheds was generated as part of the project Quantifying Floodplain Ecological Processes and Ecosystem Services in the Delaware River Watershed funded through the William Penn Foundation' Delaware Watershed Research fund. This dataset contains geomorphometry for streams and floodplains in the Chesapeake and Delaware River watersheds. Geomorphometry is a quantitative representation of landscape surface form (e.g., channel width and depth) obtained from digital elevation models (DEMs). The dataset contains geomorphometry derived from running 3-m DEMs through the Floodplain and Channel Evaluation Tool (FACET) version 0.1.0. FACET generates...
thumbnail
Geomorphometry for Streams and Floodplains in the Chesapeake and Delaware Watersheds was generated as part of the project Quantifying Floodplain Ecological Processes and Ecosystem Services in the Delaware River Watershed funded through the William Penn Foundation' Delaware Watershed Research fund. This dataset contains geomorphometry for streams and floodplains in the Chesapeake and Delaware River watersheds. Geomorphometry is a quantitative representation of landscape surface form (e.g., channel width and depth) obtained from digital elevation models (DEMs). The dataset contains geomorphometry derived from running 3-m DEMs through the Floodplain and Channel Evaluation Tool (FACET) version 0.1.0. FACET generates...
thumbnail
Geomorphometry for Streams and Floodplains in the Chesapeake and Delaware Watersheds was generated as part of the project Quantifying Floodplain Ecological Processes and Ecosystem Services in the Delaware River Watershed funded through the William Penn Foundation' Delaware Watershed Research fund. This dataset contains geomorphometry for streams and floodplains in the Chesapeake and Delaware River watersheds. Geomorphometry is a quantitative representation of landscape surface form (e.g., channel width and depth) obtained from digital elevation models (DEMs). The dataset contains geomorphometry derived from running 3-m DEMs through the Floodplain and Channel Evaluation Tool (FACET) version 0.1.0. FACET generates...
thumbnail
Geomorphometry for Streams and Floodplains in the Chesapeake and Delaware Watersheds was generated as part of the project Quantifying Floodplain Ecological Processes and Ecosystem Services in the Delaware River Watershed funded through the William Penn Foundation' Delaware Watershed Research fund. This dataset contains geomorphometry for streams and floodplains in the Chesapeake and Delaware River watersheds. Geomorphometry is a quantitative representation of landscape surface form (e.g., channel width and depth) obtained from digital elevation models (DEMs). The dataset contains geomorphometry derived from running 3-m DEMs through the Floodplain and Channel Evaluation Tool (FACET) version 0.1.0. FACET generates...
thumbnail
Geomorphometry for Streams and Floodplains in the Chesapeake and Delaware Watersheds was generated as part of the project Quantifying Floodplain Ecological Processes and Ecosystem Services in the Delaware River Watershed funded through the William Penn Foundation' Delaware Watershed Research fund. This dataset contains geomorphometry for streams and floodplains in the Chesapeake and Delaware River watersheds. Geomorphometry is a quantitative representation of landscape surface form (e.g., channel width and depth) obtained from digital elevation models (DEMs). The dataset contains geomorphometry derived from running 3-m DEMs through the Floodplain and Channel Evaluation Tool (FACET) version 0.1.0. FACET generates...
thumbnail
Geomorphometry for Streams and Floodplains in the Chesapeake and Delaware Watersheds was generated as part of the project Quantifying Floodplain Ecological Processes and Ecosystem Services in the Delaware River Watershed funded through the William Penn Foundation' Delaware Watershed Research fund. This dataset contains geomorphometry for streams and floodplains in the Chesapeake and Delaware River watersheds. Geomorphometry is a quantitative representation of landscape surface form (e.g., channel width and depth) obtained from digital elevation models (DEMs). The dataset contains geomorphometry derived from running 3-m DEMs through the Floodplain and Channel Evaluation Tool (FACET) version 0.1.0. FACET generates...
thumbnail
Geomorphometry for Streams and Floodplains in the Chesapeake and Delaware Watersheds was generated as part of the project Quantifying Floodplain Ecological Processes and Ecosystem Services in the Delaware River Watershed funded through the William Penn Foundation' Delaware Watershed Research fund. This dataset contains geomorphometry for streams and floodplains in the Chesapeake and Delaware River watersheds. Geomorphometry is a quantitative representation of landscape surface form (e.g., channel width and depth) obtained from digital elevation models (DEMs). The dataset contains geomorphometry derived from running 3-m DEMs through the Floodplain and Channel Evaluation Tool (FACET) version 0.1.0. FACET generates...
thumbnail
Geomorphometry for Streams and Floodplains in the Chesapeake and Delaware Watersheds was generated as part of the project Quantifying Floodplain Ecological Processes and Ecosystem Services in the Delaware River Watershed funded through the William Penn Foundation' Delaware Watershed Research fund. This dataset contains geomorphometry for streams and floodplains in the Chesapeake and Delaware River watersheds. Geomorphometry is a quantitative representation of landscape surface form (e.g., channel width and depth) obtained from digital elevation models (DEMs). The dataset contains geomorphometry derived from running 3-m DEMs through the Floodplain and Channel Evaluation Tool (FACET) version 0.1.0. FACET generates...
thumbnail
Geomorphometry for Streams and Floodplains in the Chesapeake and Delaware Watersheds was generated as part of the project Quantifying Floodplain Ecological Processes and Ecosystem Services in the Delaware River Watershed funded through the William Penn Foundation' Delaware Watershed Research fund. This dataset contains geomorphometry for streams and floodplains in the Chesapeake and Delaware River watersheds. Geomorphometry is a quantitative representation of landscape surface form (e.g., channel width and depth) obtained from digital elevation models (DEMs). The dataset contains geomorphometry derived from running 3-m DEMs through the Floodplain and Channel Evaluation Tool (FACET) version 0.1.0. FACET generates...
thumbnail
Geomorphometry for Streams and Floodplains in the Chesapeake and Delaware Watersheds was generated as part of the project Quantifying Floodplain Ecological Processes and Ecosystem Services in the Delaware River Watershed funded through the William Penn Foundation' Delaware Watershed Research fund. This dataset contains geomorphometry for streams and floodplains in the Chesapeake and Delaware River watersheds. Geomorphometry is a quantitative representation of landscape surface form (e.g., channel width and depth) obtained from digital elevation models (DEMs). The dataset contains geomorphometry derived from running 3-m DEMs through the Floodplain and Channel Evaluation Tool (FACET) version 0.1.0. FACET generates...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired LiDAR (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. LiDAR data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In July 2012, a helicopter-based crew photographed approximately 22 miles (35 km) of shoreline near Golovin, Alaska, from the Yuonglik River delta southeast to Portage Creek. During this flight 572 oblique aerial photographs were collected and spatially referenced using a Garmin Dakota 20 handheld GPS.
Field data are reported for the horizontal and vertical flux of wind-eroded sediment on an agricultural field in northern Germany. Measurements were made during a windstorm that hit the region on 18 May 1999. The magnitude of both fluxes was significantly affected by the presence of a surface crust covering the test field. Measuring the physical crust strength at 45 locations with a torvane, the relationships between crust strength (Ï„) and the horizontal (Fh) and vertical (Fv) sediment fluxes were investigated. Both fluxes decreased as the surface crust became stronger. The decay behaved as an exponential function for both types of flux. The horizontal sediment flux over a crusted surface can be accurately predicted...
thumbnail
As part of a study to investigate the causes of channel narrowing and incision in Canyon de Chelly National Monument, the effects of Tamarisk and Russian-olive on streambank stability were investigated. In this study, root tensile strengths and distributions in streambanks were measured and used in combination with a root-reinforcement model, RipRoot, to estimate the additional cohesion provided to layers of each streambank. The additional cohesion provided by the roots in each 0.1-m layer ranged from 0 to 6.9 kPa for Tamarisk and from 0 to 14.2 kPa for Russian-olive. Average root-reinforcement values over the entire bank profile were 2.5 and 3.2 kPa for Tamarisk and Russian-olive, respectively. The implications...


map background search result map search result map Destabilization of streambanks by removal of invasive species in Canyon de Chelly National Monument, Arizona High-resolution lidar data for infrastructure corridors, Nabesna Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Big Delta Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Tyonek Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Tyonek Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Talkeetna Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Talkeetna Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Valdez Quadrangle, Alaska Spatially referenced oblique aerial photography of the Golovin shoreline, July 2012 Geomorphometry for Hydrologic Unit 0207000803 (FACET version 0.1.0) Geomorphometry for Hydrologic Unit 0208020704 (FACET version 0.1.0) Geomorphometry for Hydrologic Unit 0208020308 (FACET version 0.1.0) Geomorphometry for Hydrologic Unit 0208010609 (FACET version 0.1.0) Geomorphometry for Hydrologic Unit 0208010601 (FACET version 0.1.0) Geomorphometry for Hydrologic Unit 0208010310 (FACET version 0.1.0) Geomorphometry for Hydrologic Unit 0206000505 (FACET version 0.1.0) Geomorphometry for Hydrologic Unit 0206000312 (FACET version 0.1.0) Geomorphometry for Hydrologic Unit 0206000203 (FACET version 0.1.0) Geomorphometry for Hydrologic Unit 0206000403 (FACET version 0.1.0) Spatially referenced oblique aerial photography of the Golovin shoreline, July 2012 Destabilization of streambanks by removal of invasive species in Canyon de Chelly National Monument, Arizona High-resolution lidar data for infrastructure corridors, Nabesna Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Big Delta Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Tyonek Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Tyonek Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Talkeetna Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Talkeetna Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Valdez Quadrangle, Alaska Geomorphometry for Hydrologic Unit 0207000803 (FACET version 0.1.0) Geomorphometry for Hydrologic Unit 0208020704 (FACET version 0.1.0) Geomorphometry for Hydrologic Unit 0208020308 (FACET version 0.1.0) Geomorphometry for Hydrologic Unit 0208010609 (FACET version 0.1.0) Geomorphometry for Hydrologic Unit 0208010601 (FACET version 0.1.0) Geomorphometry for Hydrologic Unit 0208010310 (FACET version 0.1.0) Geomorphometry for Hydrologic Unit 0206000505 (FACET version 0.1.0) Geomorphometry for Hydrologic Unit 0206000312 (FACET version 0.1.0) Geomorphometry for Hydrologic Unit 0206000203 (FACET version 0.1.0) Geomorphometry for Hydrologic Unit 0206000403 (FACET version 0.1.0)