Skip to main content
Advanced Search

Filters: Tags: Geophysics (X) > Date Range: {"choice":"month"} (X)

23 results (348ms)   

View Results as: JSON ATOM CSV
thumbnail
This data release contains processed high-resolution multichannel sparker seismic-reflection (MCS) data that were collected aboard Humboldt State University’s R/V Coral Sea in October of 2018 on U.S. Geological Survey cruise 2018-658-FA on the shelf and slope between Cape Blanco, Oregon, and Cape Mendocino, California. MCS data were collected to characterize quaternary deformation and sediment dynamics along the southern Cascadia margin.
thumbnail
This dataset accompanies planned publication 'Determining fault geometry through the transport-parallel distribution of thermochronometer cooling ages'. The Ar/Ar data is for samples that record the thermal history of the area. The geochronology provides time constraints for the thermal histories studied in the manuscript. Samples were collected from Nepal, overseen by Nadine McQuarrie (University of Pittsburgh), who sent them to the USGS Denver Argon Geochronology Laboratory for Ar/Ar analysis.
thumbnail
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired November 2018 to February 2019 along 16,816 line-kilometers (line-km) over the Mississippi Alluvial Plain (MAP). Data were acquired by CGG Canada Services, Ltd. with three different helicopter-borne sensors: the CGG Canada Services, Ltd. Resolve frequency-domain AEM instrument that is used to map subsurface geologic structure at depths up to 100 meters, depending on the subsurface resistivity; a Scintrex CS-3 cesium vapor magnetometer that detects changes in deep (hundreds of meters to kilometers) geologic structure based on variations in the magnetic properties of different formations; and a Radiation Solutions RS-500 spectrometer that...
thumbnail
In October 2016, we acquired an approximately 15-km-long seismic profile along a linear transect across the East Bay region of the San Francisco Bay area. Our goal was to image previously unknown strands of the Hayward Fault zone and to better delineate the structure and geometry of the main trace of the Hayward Fault. Our profile started near the southern border of San Leandro, California at the San Francisco Bay shoreline, trended ENE through the northern edge of Castro Valley, California, and ended approximately 5 km WSW of San Ramon, California. The data were analyzed using refraction tomography modeling, reflection processing, and guided-wave analysis. The analyzed data are presented in separate reports by...
thumbnail
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired November 2019 to March 2020 along 24,030 line-kilometers (line-km) over the Mississippi Alluvial Plain (MAP). Data were acquired by CGG Canada Services, Ltd. with three different airborne sensors: the CGG Canada Services, Ltd. TEMPEST time-domain AEM instrument that is used to map subsurface geologic structure at depths up to 300 meters (m), depending on the subsurface resistivity; a Scintrex CS-3 cesium vapor magnetometer that detects changes in deep (hundreds of meters to kilometers) geologic structure based on variations in the magnetic properties of different formations; and a Radiation Solutions RS-500 spectrometer that detects the...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Arkansas, Arkansas River, GGGSC, Geology, Geophysics, and Geochemistry Science Center, Geophysics, All tags...
thumbnail
From October 2016 to July 2018, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers and Maine Department of Transportation, collected surface, marine and borehole geophysical surveys to characterize the subsurface materials on land and under the water at a former mine facility in Brooksville, Maine. Three water-based geophysical methods were used to evaluate the geometry and composition of subsurface materials. Continuous seismic profiling (CSP) methods provide the depth to water bottom, and, when sufficient signal penetration can be achieved, delineate the depth to bedrock and subbottom materials. Continuous resistivity profiling (CRP) and frequency domain electromagnetics (FDEM) methods...
thumbnail
Water levels in Goose Pond were collected while collecting geophysical surveys in May 2017. Three transducers were set to monitor the change in water level associated with tidal changes.
thumbnail
The Consortium of Organizations for Strong Motion Observation Systems (COSMOS) supported blind trials using passive microtremor array data for shear-wave velocity site characterization. The trials included data from four sites in order to consider limitations imposed by differing geologies, differing sparse array geometries, and differing interpretation methodologies. The trials used a four-phase approach in order to evaluate changes in blind interpretation as each phase introduced additional array data. The microtremor array data were incrementally released to approximately a dozen analysts in four phases: (1) 2-station linear arrays; (2) sparse triangular arrays; (3) complex nested triangular or circular arrays;...
thumbnail
The U.S. Geological Survey National Crustal Model (NCM) is being developed to include spatially varying estimates of site response in seismic hazard assessments. Primary outputs of the NCM are continuous velocity and density profiles from the Earth’s surface to the mantle transition zone at 410 km depth for each location on a 1-kilometer grid across the conterminous United States. Datasets used to produce the NCM may have a resolution of better than 1 km near the Earth’s surface in some regions, but, with increasing depth, NCM resolution decreases to 10’s to 100’s of km in the mantle. Basic subsurface information is provided by the NCM geologic framework (NCMGF), thermal model, and petrologic and mineral physics...
thumbnail
In June 2018, the U.S. Geological Survey (USGS) in cooperation with the U.S. Environmental Protection Agency (EPA) collected geophysical measurements to help evaluate the suitability of a proposed landfill site for disposing mine-waste materials in Fredericktown, Missouri. Geophysical methods were used to evaluate and characterize the unconsolidated sediment (i.e., regolith) above the crystalline bedrock as well as determine depth bedrock. Land-based geophysical methods included frequency domain electromagnetic induction (FDEM), electrical resistivity tomography (ERT), horizontal-to-vertical spectral ratio passive seismic (HVSR), and shear-wave seismic refraction. Water-borne methods included FDEM surveys to characterize...
thumbnail
This data set includes gravity measurements for the Island of Hawai`i collected as the source data for "Deep magmatic structures of Hawaiian volcanoes, imaged by three-dimensional gravity models" (Kauahikaua, Hildenbrand, and Webring, 2000). Data for 3,611 observations are stored as a single table and disseminated in .CSV format. Each observation record includes values for field station ID, latitude and longitude (in both Old Hawaiian and WGS84 projections), elevation, and Observed Gravity value. See associated publication for reduction and interpretation of these data. Kauahikaua, J., Hildenbrand, T., and Webring, M., 2000, Deep magmatic structures of Hawaiian volcanoes, imaged by three-dimensional gravity models,...
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired November 2018 to February 2019 along 16,816 line-kilometers (line-km) over the Mississippi Alluvial Plain (MAP). Data were acquired by CGG Canada Services, Ltd. with three different helicopter-borne sensors: the CGG Canada Services, Ltd. Resolve frequency-domain AEM instrument that is used to map subsurface geologic structure at depths up to 100 meters, depending on the subsurface resistivity; a Scintrex CS-3 cesium vapor magnetometer that detects changes in deep (hundreds of meters to kilometers) geologic structure based on variations in the magnetic properties of different formations; and a Radiation Solutions RS-500 spectrometer that...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Arkansas, Bayou Bartholomew, Bayou Meto, Boeuf River, Cache River, All tags...
thumbnail
In October 2016 and May 2017 frequency domain electromagnetic (FDEM) methods were used to image the electrical conductivity of the shallow subsurface. Electrical conductivity can be caused by changes in the soil, overburden, saturation, and water quality. Two multi-frequency tools were used at the site. One of the tools has a 1.6-m long antenna that was used in the vertical-dipole mode to collect data in stepped-frequency mode at seven user-selected frequencies ranging from 1530 to 47,970 Hz. The second tool has an antenna that is 2.1 m long, and it was used in vertical dipole mode with five stepped frequencies ranging from 90 to 24,000 Hz. In general, the lower frequencies penetrate to deeper depths, but the data...
thumbnail
In October 2016 and May 2017 frequency domain electromagnetic (FDEM) methods were used to image the electrical conductivity of the shallow subsurface. Electrical conductivity can be caused by changes in the soil, overburden, saturation, and water quality. Two multi-frequency tools were used at the site. One of the tools has a 1.6-m long antenna that was used in the vertical-dipole mode to collect data in stepped-frequency mode at seven user-selected frequencies ranging from 1530 to 47,970 Hz. The second tool has an antenna that is 2.1 m long, and it was used in vertical dipole mode with five stepped frequencies ranging from 90 to 24,000 Hz. In general, the lower frequencies penetrate to deeper depths, but the data...
thumbnail
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired November 2018 to February 2019 along 16,816 line-kilometers (line-km) over the Mississippi Alluvial Plain (MAP). Data were acquired by CGG Canada Services, Ltd. with three different helicopter-borne sensors: the CGG Canada Services, Ltd. Resolve frequency-domain AEM instrument that is used to map subsurface geologic structure at depths up to 100 meters, depending on the subsurface resistivity; a Scintrex CS-3 cesium vapor magnetometer that detects changes in deep (hundreds of meters to kilometers) geologic structure based on variations in the magnetic properties of different formations; and a Radiation Solutions RS-500 spectrometer that...
thumbnail
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired November 2019 to March 2020 along 24,030 line-kilometers (line-km) over the Mississippi Alluvial Plain (MAP). Data were acquired by CGG Canada Services, Ltd. with three different airborne sensors: the CGG Canada Services, Ltd. TEMPEST time-domain AEM instrument that is used to map subsurface geologic structure at depths up to 300 meters (m), depending on the subsurface resistivity; a Scintrex CS-3 cesium vapor magnetometer that detects changes in deep (hundreds of meters to kilometers) geologic structure based on variations in the magnetic properties of different formations; and a Radiation Solutions RS-500 spectrometer that detects the...
thumbnail
High-resolution chirp sub-bottom data were collected by the U.S. Geological Survey in April 2011 south of Bainbridge Island and west of Seattle in Puget Sound, Washington. Data were collected aboard the R/V Karluk during field activity K0211PS using an Edgetech SB-512i sub-bottom profiler. Sub-bottom acoustic penetration spans several tens of meters and is variable by location.
thumbnail
The 2018 eruption of Kīlauea Volcano on the Island of Hawaiʻi saw the collapse of a new, nested caldera at the volcano’s summit, and the inundation of 35.5 square kilometers (13.7 square miles) of the lower Puna District with lava. Between May and August, while the summit caldera collapsed, a lava channel extended 11 kilometers (7 miles) from fissure 8 in Leilani Estates to Kapoho Bay, where it formed an approximately 3.5-square-kilometer (1.4-square-mile) lava delta along the coastline. Rapidly-deployed remote sensing techniques were vital in monitoring these events. Following the eruption, the U.S. Geological Survey (USGS) contracted the acquisition of rigorous airborne lidar surveys of Kīlauea Volcano's summit,...
thumbnail
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired November 2018 to February 2019 along 16,816 line-kilometers (line-km) over the Mississippi Alluvial Plain (MAP). Data were acquired by CGG Canada Services, Ltd. with three different helicopter-borne sensors: the CGG Canada Services, Ltd. Resolve frequency-domain AEM instrument that is used to map subsurface geologic structure at depths up to 100 meters, depending on the subsurface resistivity; a Scintrex CS-3 cesium vapor magnetometer that detects changes in deep (hundreds of meters to kilometers) geologic structure based on variations in the magnetic properties of different formations; and a Radiation Solutions RS-500 spectrometer that...
thumbnail
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired November 2019 to March 2020 along 24,030 line-kilometers (line-km) over the Mississippi Alluvial Plain (MAP). Data were acquired by CGG Canada Services, Ltd. with three different airborne sensors: the CGG Canada Services, Ltd. TEMPEST time-domain AEM instrument that is used to map subsurface geologic structure at depths up to 300 meters (m), depending on the subsurface resistivity; a Scintrex CS-3 cesium vapor magnetometer that detects changes in deep (hundreds of meters to kilometers) geologic structure based on variations in the magnetic properties of different formations; and a Radiation Solutions RS-500 spectrometer that detects the...


map background search result map search result map Gravity Data for Island of Hawai`i Borehole, Surface and Water-Borne Geophysical Surveys at the Callahan Mine Superfund Site in Brooksville, Maine: October 2016 to July 2018 Geophysical Data Collected for an Assessment of a Proposed Landfill Site in Fredericktown, Missouri, June 2018 Water-Based Frequency Domain Electromagnetic Surveys at the Callahan Mine Superfund Site in Brooksville, Maine: October 2016 to May 2017 Land-Based Frequency Domain Electromagnetic Surveys at the Callahan Mine Superfund Site in Brooksville, Maine: October 2016 to May 2017 Stage Measurements of Goose Pond at Callahan Mine Site: May 2017 to July 2018 Airborne electromagnetic, magnetic, and radiometric survey of the Mississippi Alluvial Plain, November 2018 - February 2019 AEM inverted resistivity models Processed airborne magnetic and radiometric grids AEM processed survey data Calibration Coefficients for the U.S. Geological Survey National Crustal Model and Depth to Water Table Multichannel sparker seismic reflection data of USGS field activity 2018-658-FA collected between Cape Blanco and Cape Mendocino from 2018-10-04 to 2018-10-18 Digital elevation model of Kīlauea Volcano, Hawaiʻi, based on July 2019 airborne lidar surveys Argon data for Nepal Data release for: An assessment of uncertainties attributed by analysts, array types and processing algorithms for microtremor observations, using the phased 2018 COSMOS Blind Trials Airborne electromagnetic, magnetic, and radiometric survey of the Mississippi Alluvial Plain, November 2019 - March 2020 Airborne EM, magnetic, and radiometric survey data AEM processed survey data Chirp sub-bottom data of USGS field activity K0211PS collected in Puget Sound, Washington in April of 2011 Data Release for the 2016 East Bay Seismic Imaging Investigation of the Hayward Fault Zone Geophysical Data Collected for an Assessment of a Proposed Landfill Site in Fredericktown, Missouri, June 2018 Borehole, Surface and Water-Borne Geophysical Surveys at the Callahan Mine Superfund Site in Brooksville, Maine: October 2016 to July 2018 Water-Based Frequency Domain Electromagnetic Surveys at the Callahan Mine Superfund Site in Brooksville, Maine: October 2016 to May 2017 Land-Based Frequency Domain Electromagnetic Surveys at the Callahan Mine Superfund Site in Brooksville, Maine: October 2016 to May 2017 Stage Measurements of Goose Pond at Callahan Mine Site: May 2017 to July 2018 Chirp sub-bottom data of USGS field activity K0211PS collected in Puget Sound, Washington in April of 2011 Data Release for the 2016 East Bay Seismic Imaging Investigation of the Hayward Fault Zone Data release for: An assessment of uncertainties attributed by analysts, array types and processing algorithms for microtremor observations, using the phased 2018 COSMOS Blind Trials Argon data for Nepal Gravity Data for Island of Hawai`i Multichannel sparker seismic reflection data of USGS field activity 2018-658-FA collected between Cape Blanco and Cape Mendocino from 2018-10-04 to 2018-10-18 AEM inverted resistivity models Processed airborne magnetic and radiometric grids AEM processed survey data Airborne electromagnetic, magnetic, and radiometric survey of the Mississippi Alluvial Plain, November 2018 - February 2019 Airborne EM, magnetic, and radiometric survey data AEM processed survey data Airborne electromagnetic, magnetic, and radiometric survey of the Mississippi Alluvial Plain, November 2019 - March 2020 Calibration Coefficients for the U.S. Geological Survey National Crustal Model and Depth to Water Table