Skip to main content
Advanced Search

Filters: Tags: Geophysics (X) > partyWithName: U.S. Geological Survey (X)

501 results (81ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
PAGER (Prompt Assessment of Global Earthquakes for Response) is an automated system that estimates the impact of significant earthquakes around the world, informing emergency responders, government and aid agencies, and the media of the scope of the potential disaster. PAGER rapidly assesses earthquake impacts by comparing the population exposed to each estimated shaking intensity level with models of economic and fatality losses based on past earthquakes in each country or region of the world. PAGER sends out alerts based on the estimated range of fatalities and economic losses.
thumbnail
In April 2017, a sequence of earthquakes offshore Valparaíso, Chile, raised concerns of a potential megathrust earthquake in the near future. The largest event in the 2017 sequence was a M6.9 on April 24th, seemingly co-located with the last great-sized earthquake in the region—a M8.0 in March 1985. The history of large earthquakes in this region shows significant variation in rupture size and extent, typically highlighted by a juxtaposition of large ruptures interspersed with smaller magnitude sequences. We show that the 2017 sequence ruptured an area between the two main slip patches during the 1985 earthquake, re-rupturing a patch that had previously slipped during the October 1973 M6.5 earthquake sequence. A...
thumbnail
This dataset consists of 102 magnetotelluric (MT) stations collected in 2012-2014 in the Rio Grande Rift and southern Rocky Mountains. The U.S. Geological Survey acquired these data to improve regional conductivity models of the western United States. This work is in support of studies of the effect of lithospheric modification on electrical resistivity structure and tectonic evolution of the western United States.
thumbnail
This dataset consists of 102 magnetotelluric (MT) stations collected in 2012-2014 in the Rio Grande Rift and southern Rocky Mountains. The U.S. Geological Survey acquired these data to improve regional conductivity models of the western United States. This work is in support of studies of the effect of lithospheric modification on electrical resistivity structure and tectonic evolution of the western United States.
thumbnail
This dataset consists of 102 magnetotelluric (MT) stations collected in 2012-2014 in the Rio Grande Rift and southern Rocky Mountains. The U.S. Geological Survey acquired these data to improve regional conductivity models of the western United States. This work is in support of studies of the effect of lithospheric modification on electrical resistivity structure and tectonic evolution of the western United States.
thumbnail
This dataset consists of 102 magnetotelluric (MT) stations collected in 2012-2014 in the Rio Grande Rift and southern Rocky Mountains. The U.S. Geological Survey acquired these data to improve regional conductivity models of the western United States. This work is in support of studies of the effect of lithospheric modification on electrical resistivity structure and tectonic evolution of the western United States.
thumbnail
The data set includes temperature data from the base of the water column along the sediment interface of the East River near Crested Butte Colorado, USA, in support of ongoing study regarding groundwater/surface water exchange. The data were collected from 08/09/2016 to 08/31/2016 using a fiber-optic distributed temperature sensing system that has 1.01 m spatial resolution along the linear fiber-optic cable. During data analysis, the original 10 min measurments were averaged (arithmetic mean) for the entire period to potentially indicate colder groundwater inflows. Additionally, the standard devation for the entire measurement period for each distance along the cable was calculated to indicate buffered zones (reduced...
thumbnail
This dataset includes the magnetotelluric (MT) sounding data collected in 2006 in the Southern San Luis Valley, Colorado. The U.S. Geological Survey conducted a series of multidisciplinary studies, including MT surveys, in the San Luis Valley to improve understanding of the hydrogeology of the Santa Fe Group and the nature of the sedimentary deposits comprising the principal groundwater aquifers of the Rio Grande rift. The shallow unconfined and the deeper confined Santa Fe Group aquifers in the San Luis Basin are the main sources of municipal water for the region. The population of the San Luis Valley region is growing rapidly and water shortfalls could have serious consequences. Future growth and land management...
thumbnail
This dataset includes the magnetotelluric (MT) sounding data collected in 2006 in the Southern San Luis Valley, Colorado. The U.S. Geological Survey conducted a series of multidisciplinary studies, including MT surveys, in the San Luis Valley to improve understanding of the hydrogeology of the Santa Fe Group and the nature of the sedimentary deposits comprising the principal groundwater aquifers of the Rio Grande rift. The shallow unconfined and the deeper confined Santa Fe Group aquifers in the San Luis Basin are the main sources of municipal water for the region. The population of the San Luis Valley region is growing rapidly and water shortfalls could have serious consequences. Future growth and land management...
thumbnail
This dataset consists of 102 magnetotelluric (MT) stations collected in 2012-2014 in the Rio Grande Rift and southern Rocky Mountains. The U.S. Geological Survey acquired these data to improve regional conductivity models of the western United States. This work is in support of studies of the effect of lithospheric modification on electrical resistivity structure and tectonic evolution of the western United States.
thumbnail
This dataset includes audiomagnetotelluric (AMT) sounding data collected in July 2018 in the Silverton Caldera complex, Colorado, in the Southern Rocky Mountain Volcanic Field, by the U.S. Geological Survey (USGS). Along with geologic mapping, airborne magnetics, airborne electromagnetics, and magnetotellurics, the USGS collected AMT data at 24 sites along four profiles ranging from 3 to 6 kilometers in length across the north-western structural margin of the Silverton caldera in Mineral Basin (MB01-MB05), across the south-eastern margin of the caldera along Cunningham Creek (CC01-CC05), within the caldera in Eureka Graben (EG01-EG05), and within the caldera along upper Cement Creek near the Gold King mine (GK01-GK09).
thumbnail
This dataset consists of 14 magnetotelluric (MT) stations collected in 2015 near San Pablo Bay, California along a east-northeast profile. The U.S. Geological Survey acquired these data to understand the fault geometry of the Hayward Fault and the Rodgers Creek Fault.
thumbnail
PAGER-CAT incorporates eight global earthquake catalogs and additional auxiliary data to provide comprehensive information for hypocentral locations, magnitudes, and human fatalities, focal mechanisms, the country of origin or the distance to the nearest landmass, local time and day of week, presence of secondary effects (e.g., tsunami, landslide, fire, or liquefaction) and deaths caused by these effects, the number of buildings damaged or destroyed, and the number of people injured or left homeless. The first version of the catalog contains more than 140 fields in which detailed event information can be recorded and currently includes events from 1900 through December 2007, with emphasis on earthquakes since 1973.
thumbnail
This data set consists of 59 wideband magnetotelluric (MT) stations collected by the U.S. Geological Survey in July and August of 2020 as part of a 1-year project funded by the Energy Resources Program of the U.S. Geological Survey to demonstrate full crustal control on geothermal systems in the Great Basin. Each station had 5 components, 3 orthogonal magnetic induction coils and 2 horizontal orthogonal electric dipoles. Data were collected for an average of 18 hours on a repeating schedule of alternating sampling rates of 256 samples/second for 7 hours and 50 minutes and 4096 samples/second for 10 minutes. The schedules were set such that each station was recording the same schedule to allow for remote reference...
thumbnail
This data set consists of 59 wideband magnetotelluric (MT) stations collected by the U.S. Geological Survey in July and August of 2020 as part of a 1-year project funded by the Energy Resources Program of the U.S. Geological Survey to demonstrate full crustal control on geothermal systems in the Great Basin. Each station had 5 components, 3 orthogonal magnetic induction coils and 2 horizontal orthogonal electric dipoles. Data were collected for an average of 18 hours on a repeating schedule of alternating sampling rates of 256 samples/second for 7 hours and 50 minutes and 4096 samples/second for 10 minutes. The schedules were set such that each station was recording the same schedule to allow for remote reference...
thumbnail
This data set consists of 59 wideband magnetotelluric (MT) stations collected by the U.S. Geological Survey in July and August of 2020 as part of a 1-year project funded by the Energy Resources Program of the U.S. Geological Survey to demonstrate full crustal control on geothermal systems in the Great Basin. Each station had 5 components, 3 orthogonal magnetic induction coils and 2 horizontal orthogonal electric dipoles. Data were collected for an average of 18 hours on a repeating schedule of alternating sampling rates of 256 samples/second for 7 hours and 50 minutes and 4096 samples/second for 10 minutes. The schedules were set such that each station was recording the same schedule to allow for remote reference...
thumbnail
This data set consists of 59 wideband magnetotelluric (MT) stations collected by the U.S. Geological Survey in July and August of 2020 as part of a 1-year project funded by the Energy Resources Program of the U.S. Geological Survey to demonstrate full crustal control on geothermal systems in the Great Basin. Each station had 5 components, 3 orthogonal magnetic induction coils and 2 horizontal orthogonal electric dipoles. Data were collected for an average of 18 hours on a repeating schedule of alternating sampling rates of 256 samples/second for 7 hours and 50 minutes and 4096 samples/second for 10 minutes. The schedules were set such that each station was recording the same schedule to allow for remote reference...
thumbnail
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired November 2018 to February 2019 along 16,816 line-kilometers (line-km) over the Mississippi Alluvial Plain (MAP). Data were acquired by CGG Canada Services, Ltd. with three different helicopter-borne sensors: the CGG Canada Services, Ltd. Resolve frequency-domain AEM instrument that is used to map subsurface geologic structure at depths up to 100 meters, depending on the subsurface resistivity; a Scintrex CS-3 cesium vapor magnetometer that detects changes in deep (hundreds of meters to kilometers) geologic structure based on variations in the magnetic properties of different formations; and a Radiation Solutions RS-500 spectrometer that...
thumbnail
This folder contains the raw and processed TEM data and inverted soundings showing resistivity (in ohm-m) with depth for all survey sites that were part of transect 7. In October and November 2016-2017, transient electromagnetic (TEM) data, also called time domain electromagnetic (TDEM) surveys, were acquired at 120 locations in the Genesee Valley, Livingston County, in New York, in order to characterize the subsurface resistivity structure in support of a U.S. Geological Survey groundwater investigation. The TEM data were collected as part of a project to evaluate geophysical methods to characterize the valley-fill sediments, underlying bedrock, and salinity of the subsurface. TEM data were collected using an ABEM...
thumbnail
This data release consists of lakebed temperature data collected at the sediment-water interface at the north end of Haskell Lake, Lac du Flambeau Reservation, Wisconsin. Data were collected using a fiber-optic distributed temperature sensor (DTS) during a 5 day period from July 27 to August 1, 2016. Established procedures were followed to estimate lakebed temperatures from the raw DTS data and calibration baths of known temperatures. This data release includes the raw DTS (Stokes and anti-Stokes intensity) data, a shape file of the DTS cable location, photos from the field deployment, and python code for reproducing the full workflow described as part of U.S. Geological Survey Scientific Investigations Report 2020-5005....


map background search result map search result map Magnetotelluric data, Southern San Luis Valley, Colorado, 2006: Station 10 Magnetotelluric data, Southern San Luis Valley, Colorado, 2006: Station 19 2017 Valparaiso, Chile earthquake data Fiber-optic distributed temperature data collected along the streambed of the East River, Crested Butte, CO, USA Station_rgr208 Station_rgr406 Station_rgr408 Station_rgr512 Station_rgr517 Audiomagnetotelluric sounding data in the Silverton Caldera complex, Colorado, 2018; Station AMTGK02 Distributed lakebed temperature data, Haskell Lake, Lac du Flambeau Reservation, Wisconsin, July 27 - Aug 1, 2016 Processed airborne magnetic and radiometric grids Magnetotelluric data from San Pablo Bay, California: station sp01 Transect 7 time-domain electromagnetic soundings to delineate saline groundwater in the Genesee valley-fill aquifer system, New York (2016-2017) station gv101 station gv115 station gv122 station gv136 Distributed lakebed temperature data, Haskell Lake, Lac du Flambeau Reservation, Wisconsin, July 27 - Aug 1, 2016 Fiber-optic distributed temperature data collected along the streambed of the East River, Crested Butte, CO, USA 2017 Valparaiso, Chile earthquake data station gv101 station gv115 station gv122 station gv136 Processed airborne magnetic and radiometric grids