Skip to main content
Advanced Search

Filters: Tags: Great Basin (X) > Date Range: {"choice":"month"} (X)

29 results (37ms)   

Filters
Contacts (Less)
View Results as: JSON ATOM CSV
thumbnail
These tables serve as input data for hierarchical models investigating interactions between raven density and Greater Sage-grouse nest success. Observations were recorded over an 11 year time period, spanning from 2009 through 2019. The model is run in JAGS via R, the code is publicly available via the U.S. Geological Survey's GitLab (O'Neil et al. 2023). We recommend not making any changes or edits to the tables unless the user is experienced with hierarchical modeling. References: O'Neil, S.T., Coates, P.S., Webster, S.C., Brussee, B.E., Dettenmaier, S.J., Tull, J.C., Jackson, P.J., Casazza, M.L., and Espinosa, S.P., 2023, Code for a hierarchical model of raven densities linked with sage-grouse nest survival...
thumbnail
The distribution and abundance of cheatgrass, an invasive annual grass native to Eurasia, has increased substantially across the Intermountain West, including the Great Basin. Cheatgrass is highly flammable, and as it has expanded, the extent and frequency of fire in the Great Basin has increased by as much as 200%. These changes in fire regimes are associated with loss of the native sagebrush, grasses, and herbaceous flowering plants that provide habitat for many native animals, including Greater Sage-Grouse. Changes in vegetation and fire management have been suggested with the intent of conserving Greater Sage-Grouse. However, the potential responses of other sensitive-status birds to these changes in management...
thumbnail
These datasets provide early estimates of 2024 fractional cover for exotic annual grass (EAG) species and one native perennial grass species on a weekly basis from April to late June. Typically, the EAG estimates are publicly released within 7-13 days of the latest satellite observation used for that version. Each weekly release contains five fractional cover maps along with their corresponding confidence maps for: 1) a group of 16 species of EAGs, 2) cheatgrass (Bromus tectorum); 3) Field Brome (Bromus arvensis); 4) medusahead (Taeniatherum caput-medusae); and 5) Sandberg bluegrass (Poa secunda). These datasets were generated leveraging field observations from Bureau of Land Management (BLM) Assessment, Inventory,...
thumbnail
FY2014Although the future of sage grouse depends on the future of sagebrush, we have limited ability to anticipate impacts of climate change on sagebrush populations. Current efforts to forecast sagebrush habitat typically rely on species distribution models (SDMs), which suffer from a variety of well-known weaknesses. However, by integrating SDMs with complementary research approaches, such as historical data analysis and mechanistic models, we can provide increased confidence in projections of habitat change. Our goal is to forecast the effect of climate change on the distribution and abundance of big sagebrush in order to inform conservation planning, and sage grouse management in particular, across the Intermountain...
thumbnail
This data release includes raw detrital zircon U-Pb data for isolated sandstones in Upper Triassic deposits of the Auld Lang Syne basin of northwest Nevada, USA. Detrital zircon U-Pb data for 11 sandstone samples (3269 zircon U-Pb dates) were acquired via LA-ICP-MS at the University of Arizona LaserChron Center for 11 sandstone samples. Primary insights from the data are twofold: 1) The data provide information about sediment provenance and indicate that sediment of the Auld Lang Syne basin was primarily derived from near the ancestral Ouachita orogen of Texas and Oklahoma. Sediment was transported to the Auld Lang Syne basin by a Late Triassic transcontinental river system, recorded today by the Upper Triassic...
thumbnail
Data includes functional group cover of exotic annual grasses and deep rooted perennial grasses within the first five years after the 2015 Soda wildfire across different post-fire restoration treatments. Additional landscape and restoration treatment covariates hypothesized to influence post-fire invasive annual grass and perennial grass cover are included.
thumbnail
A raster representing Greater Sage-grouse (hereafter sage-grouse) space-use and lek abundance. A higher pixel value corresponds to a greater amount of likelihood that the area is utilized by sage-grouse. Values are the result of combining a kernel density estimation on lek abundances with a raster representing distance to lek. The kernel density was calculated using maximum lek abundances observed between the most recent population nadir for the Great Basin region (2013) and the most recent lek counts available (2021). Polygons representing high-space use areas of Greater Sage-grouse (hereafter sage-grouse) space-use and lek abundance. Areas represent the 85 percent isopleth of the abundance and space-use index...
thumbnail
Quaking aspen populations are declining in much of the West due to altered fire regimes, competition with conifers, herbivory, drought, disease, and insect outbreaks. Aspen stands typically support higher bird biodiversity and abundance than surrounding habitat types, and maintaining current distribution and abundance of several bird species in the northern Great Basin is likely tied to the persistence of aspen in the landscape. This project examined the effects of climate change on aspen and associated bird communities by coupling empirical models of avian-habitat relationships with landscape simulations of vegetation community and disturbance dynamics under various climate change scenarios. Field data on avian...
thumbnail
Note: This data release is currently under revision and is temporarily unavailable. Phenological dynamics of terrestrial ecosystems reflect the response of the Earth's vegetation canopy to changes in climate and hydrology and are thus important to monitor operationally. The Exotic Annual Grass (EAG) phenology in the western U.S. rangeland based on 30m near seamless Harmonized Landsat and Sentinel-2 (HLS) Normalized Difference Vegetation Index (NDVI) weekly composites between 2016 and 2021 (Dahal et al., 2022) were processed using these 3 methods: (1) NDVI threshold-based method, (2) manual phenological metrics, and (3) modeling and mapping. The EAG phenology model produced eight metrics identifying the sustainable...
thumbnail
FY2010In addition to regional Science and Traditional Ecological Knowledge projects that the Great Basin LCC (GBLCC) supports, GBLCC staff lend technical expertise to a range of projects and have contributed to important regional publications on a range of subjects. These publications range in type from textbooks, to management-oriented science and conservation plans, to scientific papers and have covered subjects like wind erosion following fire, soil microbiota response to drought, plant community resilience to invasive species, and alpine plant communities. In many cases these publications form foundations for scientifically-informed management strategies across the Great Basin.
A number of modeling approaches have been developed to predict the impacts of climate change on species distributions, performance and abundance. The stronger the agreement from models that represent different processes and are based on distinct and independent sources of information, the greater the confidence we can have in their predictions. Evaluating the level of confidence is particularly important when predictions are used to guide conservation or restoration decisions. We used a multi-model approach to predict climate change impacts on big sagebrush (Artemisia tridentata), the dominant plant species on roughly 43 million hectares in the western United States and a key resource for many endemic wildlife species....
Understanding how annual climate variation affects population growth rates across a species’ range may help us anticipate the effects of climate change on species distribution and abundance. We predict that populations in warmer or wetter parts of a species’ range should respond negatively to periods of above average temperature or precipitation, respectively, whereas populations in colder or drier areas should respond positively to periods of above average temperature or precipitation. To test this, we estimated the population sensitivity of a common shrub species, big sagebrush (Artemisia tridentata), to annual climate variation across its range. Our analysis includes 8175 observations of year-to-year change in...
thumbnail
Rasters representing Greater Sage-grouse (hereafter sage-grouse) habitat selection indices (HSI), habitat selection categories, HSI combined with space-use, and example management categories. Researchers with the U.S. Geological Survey, in close cooperation with multiple state and federal resource agency partners, sought to map sage-grouse distribution and produce example habitat designations in these states. Herein, we report results of our primary study objective, which was to map sage-grouse distribution and create example habitat management and priority designations, based on more than a decade of location and survival data collected from marked sage-grouse across the study region.
This publication identifies areas where big sagebrush populations are most and least vulnerable to climate change and demonstrates where continued investment in sagebrush conservation and restoration could have the most impact.
thumbnail
As part of the periodic update of the geothermal energy assessments for the USA (e.g., last update by Williams and others, 2008), a new three-dimensional temperature map has been constructed for the Great Basin, USA. Williams and DeAngelo (2011) identified uncertainty in estimates of conductive heat flow near land surface as the largest contributor to uncertainty in previously published temperature maps. The new temperature maps incorporate new conductive heat flow estimates developed by DeAngelo and others (2023). Predicted temperatures at depth are compared with representative measurements (for conductively dominated conditions), showing good agreement under relatively simple uniform conditions. Inputs included...
thumbnail
Phenological dynamics of terrestrial ecosystems reflect the response of the Earth's vegetation canopy to changes in climate and hydrology and are thus important to monitor operationally. The Exotic Annual Grass (EAG) phenology in the western U.S. rangeland based on 30m near seamless Harmonized Landsat and Sentinel-2 (HLS) Normalized Difference Vegetation Index (NDVI) weekly composites between 2016 and 2021 (Dahal et al., 2022) were processed using these 3 methods: (1) NDVI threshold-based method, (2) manual phenological metrics, and (3) modeling and mapping. The EAG phenology model produced two metrics identifying the sustainable growth characteristics of 16 EAG species throughout level III Commission for Environmental...
thumbnail
The data were collected at Morley Nelson, Birds of Prey National Conservation Area (NCA) where known grazing regimes, including the season of grazing, have been in practice for the last 30 years. Surveyed plots were placed to account for intensity of grazing and to avoid confounding disturbances. Data were collected on the morphogroups of biological soil crusts (biocrusts) found within the NCA, and include measurements on soils related to texture, carbon, nitrogen and the abundance of soil aggregating cyanobacteria in the soil. These data support the following publication: Condon, L.A., Rosentreter, R., Veblen, K.E. and Coates, P.S., 2024. Season of grazing interacts with soil texture, selecting for associations...
thumbnail
A raster identifying areas that met the criteria to be priority habitat before a fire disturbance occurred. This file is binary, a value of 1 indicates the pixel represents pre-fire priority habitat, a value of 0 indicates the pixel did not meet the criteria of selection, survival, and space-use to be considered pre-fire priority habitat.
thumbnail
Rasters representing median raven density estimates, calculated from approximately 28,000 raven point count surveys conducted between 2009 and 2019. Estimates were the result of a Bayesian hierarchical distance sampling model, using environmental covariates on detection and abundance.
On November 4, 2016, Dr. Peter Adler, Utah State University, discussed how sagebrush sensitivity to climate change varies across the region and the strengths and weaknesses of various climate modeling approaches. Healthy big sagebrush habitat is essential for the persistence of many high value conservation species across the western US. To gain confidence in predictions of climate change impacts on existing populations of big sagebrush, a research team from Utah State University compared output from four modeling approaches, each based on very different data and assumptions. These models largely agree that rising temperatures will decrease sagebrush cover and biomass in the warmest portions of the region, but increase...


map background search result map search result map Quantifying Vulnerability of Quaking Aspen Woodlands and Associated Bird Communities to Global Climate Change in the Northern Great Basin Relations Among Cheatgrass, Fire, Climate, and Sensitive-Status Birds across the Great Basin Forecasting Changes in Sagebrush Distribution and Abundance Under Climate Change: Integration of Spatial, Temporal, and Mechanistic Models Research and Publications Authored and Supported by GBLCC Staff Exotic annual grass (EAG) phenology estimates in the western U.S. rangelands based on 30-m HLS NDVI (ver. 2.0, April 2024) Morphogroups of Biocrusts Following Seasons of Grazing Near Boise, Idaho Detrital zircon U-Pb data for Upper Triassic sandstones of the Auld Lang Syne basin, northwest Nevada, USA Median Estimates of Raven Density in California, Nevada, and Idaho (2012 - 2019) Raven Observations near Greater Sage-Grouse Nests in the Great Basin and Bi-State Regions of the Western United States (2009 - 2019) Three-dimensional temperature model of the Great Basin, USA Ocular field estimates of exotic annual and perennial grass cover across the Soda Wildfire Greater Sage-grouse habitat selection, example management categories, and corridors, Nevada and northeastern California Greater Sage-grouse Abundance and Space-use Index, Nevada and Northeastern California Greater Sage-grouse Pre-fire Priority Habitat, Nevada and Northeastern California Exotic annual grass (EAG) phenology estimates in the western U.S. rangelands based on 30-m HLS NDVI: 2017 - 2021 Early Estimates of Exotic Annual Grass (EAG) in the Sagebrush Biome, USA, 2024 Morphogroups of Biocrusts Following Seasons of Grazing Near Boise, Idaho Ocular field estimates of exotic annual and perennial grass cover across the Soda Wildfire Detrital zircon U-Pb data for Upper Triassic sandstones of the Auld Lang Syne basin, northwest Nevada, USA Quantifying Vulnerability of Quaking Aspen Woodlands and Associated Bird Communities to Global Climate Change in the Northern Great Basin Greater Sage-grouse Pre-fire Priority Habitat, Nevada and Northeastern California Greater Sage-grouse Abundance and Space-use Index, Nevada and Northeastern California Greater Sage-grouse habitat selection, example management categories, and corridors, Nevada and northeastern California Median Estimates of Raven Density in California, Nevada, and Idaho (2012 - 2019) Raven Observations near Greater Sage-Grouse Nests in the Great Basin and Bi-State Regions of the Western United States (2009 - 2019) Three-dimensional temperature model of the Great Basin, USA Research and Publications Authored and Supported by GBLCC Staff Relations Among Cheatgrass, Fire, Climate, and Sensitive-Status Birds across the Great Basin Forecasting Changes in Sagebrush Distribution and Abundance Under Climate Change: Integration of Spatial, Temporal, and Mechanistic Models Exotic annual grass (EAG) phenology estimates in the western U.S. rangelands based on 30-m HLS NDVI (ver. 2.0, April 2024) Exotic annual grass (EAG) phenology estimates in the western U.S. rangelands based on 30-m HLS NDVI: 2017 - 2021 Early Estimates of Exotic Annual Grass (EAG) in the Sagebrush Biome, USA, 2024