Skip to main content
Advanced Search

Filters: Tags: Great Basin (X) > Extensions: Raster (X)

20 results (96ms)   

View Results as: JSON ATOM CSV
thumbnail
This raster represents a continuous surface of sage-grouse habitat suitability index (HSI) values for northeastern California. HSIs were calculated for spring (mid-March to June), summer (July to mid-October), and winter (November to March) sage-grouse seasons, and then multiplied together to create this composite dataset.
thumbnail
Five principal components are used to represent the climate variation in an original set of 12 composite climate variables reflecting complex precipitation and temperature gradients. The dataset provides coverage for future climate (defined as the 2040-2070 normal period) under the RCP4.5 emission scenarios. Climate variables were chosen based on their known influence on local adaptation in plants, and include: mean annual temperature, summer maximum temperature, winter minimum temperature, annual temperature range, temperature seasonality (coefficient of variation in monthly average temperatures), mean annual precipitation, winter precipitation, summer precipitation, proportion of summer precipitation, precipitation...
thumbnail
Five principal components are used to represent the climate variation in an original set of 12 composite climate variables reflecting complex precipitation and temperature gradients. The dataset provides coverage for future climate (defined as the 2040-2070 normal period) under the RCP8.5 emission scenarios. Climate variables were chosen based on their known influence on local adaptation in plants, and include: mean annual temperature, summer maximum temperature, winter minimum temperature, annual temperature range, temperature seasonality (coefficient of variation in monthly average temperatures), mean annual precipitation, winter precipitation, summer precipitation, proportion of summer precipitation, precipitation...
thumbnail
The dataset provides a near real time estimation of 2020 herbaceous mostly annual fractional cover predicted on July 1st with an emphasis on annual exotic grasses Historically, similar maps were produced at a spatial resolution of 250m (Boyte et al. 2019 https://doi.org/10.5066/P96PVZIF., Boyte et al. 2018 https://doi.org/10.5066/P9RIV03D.), but starting this year we are mapping at a 30m resolution (Pastick et al. 2020 doi:10.3390/rs12040725). This dataset was generated using in situ observations from Bureau of Land Management’s (BLM) Assessment, Inventory, and Monitoring data (AIM) plots; weekly composites of harmonized Landsat and Sentinel-2 (HLS) data (https://hls.gsfc.nasa.gov/); relevant environmental, vegetation,...
thumbnail
This raster represents a continuous surface of sage-grouse habitat suitability index (HSI) values for Nevada during summer, which is a surrogate for habitat conditions during the sage-grouse brood-rearing period.
thumbnail
The dataset provides a spatially explicit estimate of 2019 herbaceous annual percent cover predicted on May 1st with an emphasis on annual grasses. The estimate is based on the mean output of two regression-tree models. For one model, we include, as an independent variable amongst other independent variables, a dataset that is the mean of 17-years of annual herbaceous percent cover (https://doi.org/10.5066/F71J98QK). This model's test mean error rate (n = 1670), based on nine different randomizations, equals 4.9% with a standard deviation of +/- 0.15. A second model was developed that did not include the mean of 17-years of annual herbaceous percent cover, and this model's test mean error rate (n = 1670), based...
thumbnail
This raster represents a continuous surface of sage-grouse habitat suitability index (HSI) values for northeastern California during summer (July to mid-October), which is a surrogate for habitat conditions during the sage-grouse brood-rearing period.
thumbnail
This raster represents a continuous surface of sage-grouse habitat suitability index (HSI) values for northeastern California during spring (mid-March to June), which is a surrogate for habitat conditions during the sage-grouse breeding and nesting period.
thumbnail
This raster represents a continuous surface of sage-grouse habitat suitability index (HSI) values for northeastern California during the winter season (November to March), and is a surrogate for habitat conditions during periods of cold and snow.
thumbnail
This raster represents a continuous surface of sage-grouse habitat suitability index (HSI) values for Nevada. HSIs were calculated for spring, summer, and winter sage-grouse seasons, and then multiplied together to create this composite dataset.
thumbnail
Five principal components are used to represent the climate variation in an original set of 12 composite climate variables reflecting complex precipitation and temperature gradients. The dataset provides coverage for future climate (defined as the 2040-2070 normal period) under the RCP8.5 emission scenarios. Climate variables were chosen based on their known influence on local adaptation in plants, and include: mean annual temperature, summer maximum temperature, winter minimum temperature, annual temperature range, temperature seasonality (coefficient of variation in monthly average temperatures), mean annual precipitation, winter precipitation, summer precipitation, proportion of summer precipitation, precipitation...
thumbnail
The dataset delineates ecological zones within California deserts. We derived ecological zones by reclassifying LANDFIRE vegetation biophysical setting types, plus defined various non-wildland (e.g. developed urban/agriculture/roads) and non-burnable (e.g. open water/barren) areas using LANDFIRE existing vegetation types. The 43 biophysical setting types present within the study area were grouped into 13 general vegetation types, which were further grouped into 4 elevation-based ecological zones plus one riparian zone according to their constituent plant associations.
thumbnail
Five principal components are used to represent the climate variation in an original set of 12 composite climate variables reflecting complex precipitation and temperature gradients. The dataset provides coverage for current climate (defined as the 1980-2010 normal period). Climate variables were chosen based on their known influence on local adaptation in plants, and include: mean annual temperature, summer maximum temperature, winter minimum temperature, annual temperature range, temperature seasonality (coefficient of variation in monthly average temperatures), mean annual precipitation, winter precipitation, summer precipitation, proportion of summer precipitation, precipitation seasonality (coefficient of variation...
thumbnail
This raster dataset depicts phase 1 pinyon-juniper expansion , where shrubs and herbs are the dominant vegetation and conifers occupy greater than zero percent to ten percent, intersecting documented sage-grouse habitat management categories (Coates et al., 2016a, Coates et al., 2016b). These data support the following publication: K. Benjamin Gustafson, Peter S. Coates, Cali L. Roth, Michael P. Chenaille, Mark A. Ricca, Erika Sanchez-Chopitea, Michael L. Casazza, Using object-based image analysis to conduct high- resolution conifer extraction at regional spatial scales, International Journal of Applied Earth Observation and Geoinformation, Volume 73, December 2018, Pages 148-155, ISSN 0303-2434, https://doi.org/10.1016/j.jag.2018.06.002....
thumbnail
This raster represents a continuous surface of sage-grouse habitat suitability index (HSI) values for Nevada during the winter season, and is a surrogate for habitat conditions during periods of cold and snow.
thumbnail
This dataset provides a near-real-time estimate of 2019 herbaceous annual cover with an emphasis on annual grass (Boyte and Wylie. 2016. Near-real-time cheatgrass percent cover in the Northern Great Basin, USA, 2015. Rangelands 38:278-284.) This estimate was based on remotely sensed enhanced Moderate Resolution Imaging Spectroradiometer (eMODIS) Normalized Difference Vegetation Index (NDVI) data gathered through June 24, 2019. This is the second iteration of an early estimate of herbaceous annual cover for 2019 over the same geographic area. The previous dataset used eMODIS NDVI data gathered through April 28, 2019 (https://doi.org/10.5066/P9ZEK5M1). The pixel values for this most recent estimate ranged from 0 to100%...
thumbnail
Five principal components are used to represent the climate variation in an original set of 12 composite climate variables reflecting complex precipitation and temperature gradients. The dataset provides coverage for future climate (defined as the 2040-2070 normal period) under the RCP4.5 emission scenarios. Climate variables were chosen based on their known influence on local adaptation in plants, and include: mean annual temperature, summer maximum temperature, winter minimum temperature, annual temperature range, temperature seasonality (coefficient of variation in monthly average temperatures), mean annual precipitation, winter precipitation, summer precipitation, proportion of summer precipitation, precipitation...
thumbnail
Five principal components are used to represent the climate variation in an original set of 12 composite climate variables reflecting complex precipitation and temperature gradients. The dataset provides coverage for future climate (defined as the 2010-2040 normal period) under the RCP4.5 emission scenario. Climate variables were chosen based on their known influence on local adaptation in plants, and include: mean annual temperature, summer maximum temperature, winter minimum temperature, annual temperature range, temperature seasonality (coefficient of variation in monthly average temperatures), mean annual precipitation, winter precipitation, summer precipitation, proportion of summer precipitation, precipitation...
thumbnail
Five principal components are used to represent the climate variation in an original set of 12 composite climate variables reflecting complex precipitation and temperature gradients. The dataset provides coverage for current climate (defined as the 1980-2010 normal period). Climate variables were chosen based on their known influence on local adaptation in plants, and include: mean annual temperature, summer maximum temperature, winter minimum temperature, annual temperature range, temperature seasonality (coefficient of variation in monthly average temperatures), mean annual precipitation, winter precipitation, summer precipitation, proportion of summer precipitation, precipitation seasonality (coefficient of variation...
thumbnail
Five principal components are used to represent the climate variation in an original set of 12 composite climate variables reflecting complex precipitation and temperature gradients. The dataset provides coverage for future climate (defined as the 2010-2040 normal period) under the RCP8.5 emission scenario. Climate variables were chosen based on their known influence on local adaptation in plants, and include: mean annual temperature, summer maximum temperature, winter minimum temperature, annual temperature range, temperature seasonality (coefficient of variation in monthly average temperatures), mean annual precipitation, winter precipitation, summer precipitation, proportion of summer precipitation, precipitation...


    map background search result map search result map Summer Season Habitat Suitability Index raster dataset Winter Season Habitat Suitability Index raster dataset Composite Habitat Suitability Index raster dataset Ecological zones of California deserts Sage-grouse habitat management categories within phase 1 Pinyon-Juniper expansion in Nevada and northeastern California, derived from 2016 and 2017 Raster Products Principal components of climate variation in the Desert Southwest for the time period 1980-2010 Principal components of climate variation in the Desert Southwest for the future time period 2040-2070 (RCP 4.5) Principal components of climate variation in the Desert Southwest for the future time period 2040-2070 (RCP 8.5) Composite Habitat Suitability Index Raster Dataset Spring Season Habitat Suitability Index Raster Dataset Summer Season Habitat Suitability Index Raster Dataset Winter Season Habitat Suitability Index Raster Dataset Early Estimates of Herbaceous Annual Cover in the Sagebrush Ecosystem (May 1, 2019) Near-real-time Herbaceous Annual Cover in the Sagebrush Ecosystem, USA, July 2019 Principal components of climate variation in the Desert Southwest for the future time period 2010-2040 (RCP 8.5) Principal components of climate variation in the Desert Southwest for the future time period 2040-2070 (RCP 4.5) Principal components of climate variation in the Desert Southwest for the time period 1980-2010 Principal components of climate variation in the Desert Southwest for the future time period 2010-2040 (RCP 4.5) Principal components of climate variation in the Desert Southwest for the future time period 2040-2070 (RCP 8.5) Near real time estimation of annual exotic herbaceous fractional cover in the sagebrush ecosystem 30m, USA, July 2020 Composite Habitat Suitability Index Raster Dataset Spring Season Habitat Suitability Index Raster Dataset Summer Season Habitat Suitability Index Raster Dataset Winter Season Habitat Suitability Index Raster Dataset Sage-grouse habitat management categories within phase 1 Pinyon-Juniper expansion in Nevada and northeastern California, derived from 2016 and 2017 Raster Products Summer Season Habitat Suitability Index raster dataset Winter Season Habitat Suitability Index raster dataset Composite Habitat Suitability Index raster dataset Ecological zones of California deserts Principal components of climate variation in the Desert Southwest for the future time period 2040-2070 (RCP 4.5) Principal components of climate variation in the Desert Southwest for the future time period 2040-2070 (RCP 4.5) Principal components of climate variation in the Desert Southwest for the future time period 2040-2070 (RCP 8.5) Principal components of climate variation in the Desert Southwest for the future time period 2040-2070 (RCP 8.5) Principal components of climate variation in the Desert Southwest for the time period 1980-2010 Principal components of climate variation in the Desert Southwest for the time period 1980-2010 Principal components of climate variation in the Desert Southwest for the future time period 2010-2040 (RCP 8.5) Principal components of climate variation in the Desert Southwest for the future time period 2010-2040 (RCP 4.5) Early Estimates of Herbaceous Annual Cover in the Sagebrush Ecosystem (May 1, 2019) Near-real-time Herbaceous Annual Cover in the Sagebrush Ecosystem, USA, July 2019 Near real time estimation of annual exotic herbaceous fractional cover in the sagebrush ecosystem 30m, USA, July 2020