Skip to main content
Advanced Search

Filters: Tags: Great Basin (X) > partyWithName: Brianne E Brussee (X)

42 results (17ms)   

View Results as: JSON ATOM CSV
thumbnail
This raster represents a continuous surface of sage-grouse habitat suitability index (HSI) values for northeastern California. HSIs were calculated for spring (mid-March to June), summer (July to mid-October), and winter (November to March) sage-grouse seasons, and then multiplied together to create this composite dataset.
thumbnail
These tables serve as input data for hierarchical models investigating interactions between raven density and Greater Sage-grouse nest success. Observations were recorded over an 11 year time period, spanning from 2009 through 2019. The model is run in JAGS via R, the code is publicly available via the U.S. Geological Survey's GitLab (O'Neil et al. 2023). We recommend not making any changes or edits to the tables unless the user is experienced with hierarchical modeling. References: O'Neil, S.T., Coates, P.S., Webster, S.C., Brussee, B.E., Dettenmaier, S.J., Tull, J.C., Jackson, P.J., Casazza, M.L., and Espinosa, S.P., 2023, Code for a hierarchical model of raven densities linked with sage-grouse nest survival...
thumbnail
We used a hierarchical Bayesian modeling framework to estimate resource selection functions and survival for early and late brood-rearing stages of sage-grouse in relation to a broad suite of habitat characteristics evaluated at multiple spatial scales within the Great Basin from 2009 to 2019. Sage-grouse selected for greater perennial grass cover, higher relative elevations, and areas closer to springs and wet meadows during both early and late brood-rearing. Terrain characteristics, including heat load and aspect, were important in survival models, as was variation in shrub height. We also found strong evidence for higher survival for both early and late broods within previously burned areas, but survival within...
thumbnail
Ranked habitat classes for sage-grouse brood-rearing productivity at each 90 m pixel. Habitat classes represent areas where high brood selection and high brood survival intersected, whereas the lowest ranks represent areas where high brood habitat selection intersected with the low brood survival. Hierarchical models of brood selection and survival were fit to landscape covariates within a Bayesian modeling framework in Nevada and California from 2009 - 2017 to develop spatially explicit information about brood habitat selection and survival.
thumbnail
Predictions of raven occurrence in the absence of anthropogenic environmental effects. Raven point counts were related to landscape covariates using Bayesian hierarchical occupancy models and the means of the posterior distributions for relevant effects were used to generate the predictions.
thumbnail
This shapefile represents habitat suitability categories (High, Moderate, Low, and Non-Habitat) derived from a composite, continuous surface of sage-grouse habitat suitability index (HSI) values for northeastern California during the winter season (November to March), and is a surrogate for habitat conditions during periods of cold and snow.
thumbnail
Map of cumulative 38-day nest survival predicted from a Bayesian hierarchical shared frailty model of sage-grouse nest fates. The midpoint of coefficient conditional posterior distributions of 38-day nest survival were used for prediction at each 30 meter pixel across the landscape.
thumbnail
These data represent habitat selection of greater sage-grouse at the 50 day mark of their brood rearing process. Sage-grouse and their broods were monitored on their own individual time lines, so one group's 50th day may not necessarily be the same as any other bird's 50th day.
thumbnail
A raster representing Greater Sage-grouse (hereafter sage-grouse) space-use and lek abundance. A higher pixel value corresponds to a greater amount of likelihood that the area is utilized by sage-grouse. Values are the result of combining a kernel density estimation on lek abundances with a raster representing distance to lek. The kernel density was calculated using maximum lek abundances observed between the most recent population nadir for the Great Basin region (2013) and the most recent lek counts available (2021). Polygons representing high-space use areas of Greater Sage-grouse (hereafter sage-grouse) space-use and lek abundance. Areas represent the 85 percent isopleth of the abundance and space-use index...
thumbnail
Predictions of raven occurrence in the absence of natural environmental effects. Raven point counts were related to landscape covariates using Bayesian hierarchical occupancy models and the means of the posterior distributions for relevant effects were used to generate the predictions.
thumbnail
Ranked index of model-projected nest site selection integrated with nesting productivity (i.e., nest survival), demonstrating the spatial distribution of adaptive vs. maladaptive habitat selection at each 30 m pixel. Hierarchical models of nest selection and survival were fit to landscape covariates within a Bayesian modeling framework in Nevada and California from 2009 through 2017 to develop spatially explicit information about nest site selection and survival consequences across the landscape. Habitat was separated into 16 classes ranking from high (1) to low (16). Habitat ranked highest where the top nest selection and survival classes intersected (adaptive selection), whereas the lowest rank occurred where...
thumbnail
This raster represents a continuous surface of sage-grouse habitat suitability index (HSI) values for northeastern California during summer (July to mid-October), which is a surrogate for habitat conditions during the sage-grouse brood-rearing period.
thumbnail
This shapefile represents proposed management categories (Core, Priority, General, and Non-Habitat) derived from the intersection of habitat suitability categories and lek space use. Habitat suitability categories were derived from a composite, continuous surface of sage-grouse habitat suitability index (HSI) values for northeastern California formed from the multiplicative product of the spring (mid-March to June), summer (July to mid-Octoer), and winter (November to March) HSI surfaces.
thumbnail
Rasters representing Greater Sage-grouse (hereafter sage-grouse) habitat selection indices (HSI), habitat selection categories, HSI combined with space-use, and example management categories. Researchers with the U.S. Geological Survey, in close cooperation with multiple state and federal resource agency partners, sought to map sage-grouse distribution and produce example habitat designations in these states. Herein, we report results of our primary study objective, which was to map sage-grouse distribution and create example habitat management and priority designations, based on more than a decade of location and survival data collected from marked sage-grouse across the study region.
thumbnail
Expanding human enterprise across remote environments impacts many wildlife species, including sage-grouse (Centrocercus urophasianus), an indicator species whose decline is at the center of national conservation strategies and land use policies. Anthropogenic resources provide subsidies for generalist predators, potentially leading to cascading effects on sensitive prey species at lower trophic levels. In semi-arid western ecosystems, common ravens (Corvus corax) are expanding in distribution and abundance, and may be negatively affecting sage-grouse reproductive success at broad spatial scales. Ravens are a common predator of sage-grouse nests, and potentially prey on chicks as well. This research aimed to address...
thumbnail
A raster identifying areas that met the criteria to be priority habitat before a fire disturbance occurred. This file is binary, a value of 1 indicates the pixel represents pre-fire priority habitat, a value of 0 indicates the pixel did not meet the criteria of selection, survival, and space-use to be considered pre-fire priority habitat.
thumbnail
Rasters representing median raven density estimates, calculated from approximately 28,000 raven point count surveys conducted between 2009 and 2019. Estimates were the result of a Bayesian hierarchical distance sampling model, using environmental covariates on detection and abundance.


map background search result map search result map Data from: Broad-scale occurrence of a subsidized avian predator: reducing impacts of ravens on sage-grouse and other sensitive prey Raven study site locations in the Great Basin, derived from survey locations 2007 - 2016 Predictions of raven occurrence in the absence of natural environmental effects in the Great Basin, 2007-2016 (Fig. 4A) Predictions of raven occurrence in the absence of anthropogenic environmental effects in the Great Basin, 2007-2016 (Fig. 4B) Prediction of raven occurrence intersected with high impact areas for sage-grouse populations in the Great Basin, 2007-2016 (Fig. 5A) Composite Habitat Suitability Index Raster Dataset Composite Management Categories Shapefile Summer Season Habitat Suitability Index Raster Dataset Winter Season Habitat Categories Shapefile Greater Sage-grouse Nest Survival, Nevada and California 2019 Greater Sage-grouse Nest Site Source-Sink, Nevada and California 2019 Spatially-Explicit Predictive Maps of Greater Sage-Grouse Brood Selection Integrated with Brood Survival in Nevada and Northeastern California, USA Habitat Suitability Index for Greater Sage-Grouse 50 Days into the Brood Rearing Life Stage, Nevada and California Habitat Suitability Index for Greater Sage-Grouse During the Late Brood Rearing Life Stage, Nevada and California Ranked Habitat Classes for Sage-Grouse Brood-Rearing Productivity, Nevada and California Median Estimates of Raven Density in California, Nevada, and Idaho (2012 - 2019) Raven Observations near Greater Sage-Grouse Nests in the Great Basin and Bi-State Regions of the Western United States (2009 - 2019) Greater Sage-grouse habitat selection, example management categories, and corridors, Nevada and northeastern California Greater Sage-grouse Abundance and Space-use Index, Nevada and Northeastern California Greater Sage-grouse Pre-fire Priority Habitat, Nevada and Northeastern California Composite Habitat Suitability Index Raster Dataset Summer Season Habitat Suitability Index Raster Dataset Winter Season Habitat Categories Shapefile Composite Management Categories Shapefile Greater Sage-grouse Pre-fire Priority Habitat, Nevada and Northeastern California Greater Sage-grouse Nest Site Source-Sink, Nevada and California 2019 Greater Sage-grouse Nest Survival, Nevada and California 2019 Greater Sage-grouse Abundance and Space-use Index, Nevada and Northeastern California Greater Sage-grouse habitat selection, example management categories, and corridors, Nevada and northeastern California Median Estimates of Raven Density in California, Nevada, and Idaho (2012 - 2019) Spatially-Explicit Predictive Maps of Greater Sage-Grouse Brood Selection Integrated with Brood Survival in Nevada and Northeastern California, USA Habitat Suitability Index for Greater Sage-Grouse 50 Days into the Brood Rearing Life Stage, Nevada and California Habitat Suitability Index for Greater Sage-Grouse During the Late Brood Rearing Life Stage, Nevada and California Ranked Habitat Classes for Sage-Grouse Brood-Rearing Productivity, Nevada and California Raven Observations near Greater Sage-Grouse Nests in the Great Basin and Bi-State Regions of the Western United States (2009 - 2019) Raven study site locations in the Great Basin, derived from survey locations 2007 - 2016 Prediction of raven occurrence intersected with high impact areas for sage-grouse populations in the Great Basin, 2007-2016 (Fig. 5A) Data from: Broad-scale occurrence of a subsidized avian predator: reducing impacts of ravens on sage-grouse and other sensitive prey Predictions of raven occurrence in the absence of natural environmental effects in the Great Basin, 2007-2016 (Fig. 4A) Predictions of raven occurrence in the absence of anthropogenic environmental effects in the Great Basin, 2007-2016 (Fig. 4B)