Skip to main content
USGS - science for a changing world
Advanced Search

Filters: Tags: Great Northern LCC (X) > Types: Citation (X)

17 results (12ms)   

View Results as: JSON ATOM CSV
thumbnail
This dataset is one of a dozen or so datasets that provide the basis for a vulnerability assessment of the Great Northern LCC that examines land use and climate changes at landscape scales, for the full LCC boundary. It provides a measure of vulnerability based on biome velocity and using a terrestrial (moving window) anlaysis. The values range from 0 to 1 and are unitless, where Vhg = Eh x (1-Ag). The original floating point values ranging from 0-1.0 were multiplied by 100 and converted to integer format for this dataset.
thumbnail
This dataset is one of a dozen or so datasets that provide the basis for a vulnerability assessment of the Great Northern LCC that examines land use and climate changes at landscape scales, for the full LCC boundary. It provides a measure of vulnerability based on temperature change using a watershed-based analysis. The values range from 0 to 1 and are unitless, where Vtw = Et x (1-Aw). The original floating point values ranging from 0-1.0 were multiplied by 100 and converted to integer format for this dataset.
thumbnail
This dataset is one of a dozen or so datasets that provide the basis for a vulnerability assessment of the Great Northern LCC that examines land use and climate changes at landscape scales, for the full LCC boundary. It represents terrestrially-defined adaptive capacity, where values run from 0 to 1.0 and is calculated as the complement of the degree of human modification (1-H). The original floating point values ranging from 0-1.0 were multiplied by 100 and converted to integer format for this dataset.
thumbnail
This dataset is one of a dozen or so datasets that provide the basis for a vulnerability assessment of the Great Northern LCC that examines land use and climate changes at landscape scales, for the full LCC boundary. It provides a measure of vulnerability based on climate velocity using a terrestrially-based analysis. The values range from 0 to 1 and are unitless, where Vvg = Ev x (1-Ag). The original floating point values ranging from 0-1.0 were multiplied by 100 and converted to integer format for this dataset.
thumbnail
This dataset is one of a dozen or so datasets that provide the basis for a vulnerability assessment of the Great Northern LCC that examines land use and climate changes at landscape scales, for the full LCC boundary. It provides a measure of vulnerability based on climate velocity using a watershed-based analysis. The values range from 0 to 1 and are unitless, where Vvw = Ev x (1-Aw). The original floating point values ranging from 0-1.0 were multiplied by 100 and converted to integer format for this dataset.
thumbnail
This dataset is one of a dozen or so datasets that provide the basis for a vulnerability assessment of the Great Northern LCC that examines land use and climate changes at landscape scales, for the full LCC boundary. It is an exposure variable that represents the temperature change (degrees C) from baseline (1950-2000) to future (2061-2080).
thumbnail
This dataset is one of a dozen or so datasets that provide the basis for a vulnerability assessment of the Great Northern LCC that examines land use and climate changes at landscape scales, for the full LCC boundary. It is an exposure variable that represents the climate velocity for Rehfeldt biome-habitat types (from 2000 to 2060), where units are in km/year.
thumbnail
This dataset is one of a dozen or so datasets that provide the basis for a vulnerability assessment of the Great Northern LCC that examines land use and climate changes at landscape scales, for the full LCC boundary. It represents terrestrially-defined adaptive capacity, where values run from 0 to 1.0 and is calculated as the complement of the degree of human modification (1-H). The original floating point values ranging from 0-1.0 were multiplied by 100 and converted to integer format for this dataset.
This data atlas was created as part of the Great Northern Landscape Conservation Cooperative (GNLCC) Ecological Connectivity Project.
thumbnail
This dataset is one of a dozen or so datasets that provide the basis for a vulnerability assessment of the Great Northern LCC that examines land use and climate changes at landscape scales, for the full LCC boundary. It represents hydrologically-defined adaptive capacity, where values run from 0 to 1.0 and is calculated as the complement of the degree of human modification (1-H), and are then averaged using hierarchical watersheds. The original floating point values ranging from 0-1.0 were multiplied by 100 and converted to integer format for this dataset.
thumbnail
This dataset is one of a dozen or so datasets that provide the basis for a vulnerability assessment of the Great Northern LCC that examines land use and climate changes at landscape scales, for the full LCC boundary. It is an exposure variable that represents the climate velocity (km/year) which is computed as the mean rate of change in temperature over time (future-baseline; degrees C/km) divided by the rate of temperature change over space (degrees C/km).
thumbnail
This dataset is one of a dozen or so datasets that provide the basis for a vulnerability assessment of the Great Northern LCC that examines land use and climate changes at landscape scales, for the full LCC boundary. It provides a measure of vulnerability based on biome velocity and using hydrological-based analysis (hierarchical watersheds). The values range from 0 to 1 and are unitless, where Vhw = Eh x (1-Aw). The original floating point values ranging from 0-1.0 were multiplied by 100 and converted to integer format for this dataset.
thumbnail
The ecologically-relevant geophysical (ERGo) landforms dataset is a comprehensive classification of landforms based on hillslope position and dominant physical processes that covers most of North America. Four hillslope positions form a natural sequence of topographic units along the catena: ridges/peaks (summits), upper slopes (shoulders), lower slopes (foot slopes), and valley bottoms (toe slopes). The position within each of these hillslopes as a function of solar orientation to reflect how ecological processes (especially soil moisture and evapotranspiration) are influenced by insolation. Also included are very flat (i.e. areas <2°) or very steep (i.e. “cliffs” >50°). We provide these data here at 30 m resolution,...
thumbnail
This dataset is one of a dozen or so datasets that provide the basis for a vulnerability assessment of the Great Northern LCC that examines land use and climate changes at landscape scales, for the full LCC boundary. It represents a combined measure of physiographic diversity (EH) and terrestrially-defined adaptive capacity (Ag). Values run from 0 to 1.0 and is calculated as: Agp = EH x Ag. The original floating point values ranging from 0-1.0 were multiplied by 100 and converted to integer format for this dataset.
thumbnail
The Great Northern LCC has funded various strategic science support projects since 2010 that are closely tied to the Great Northern LCC strategic framework. This dataset has cataloged much of the information needed to track the projects and distribute information. One layer (Projects polygon) and 12 non-spatial tables (ConsvTargets,Deliverables,Deliverables_File_Detail,EcotypicArea,Funding_Recipients_Dispersal,Funding_Source,FundReportingInKind,Goals,PrjContacts,PrjContacts_additional_groups,Stressors,StatesProvinces) make up the dataset.
thumbnail
This dataset is one of a dozen or so datasets that provide the basis for a vulnerability assessment of the Great Northern LCC that examines land use and climate changes at landscape scales, for the full LCC boundary. It is an exposure variable that represents the physiographic diversity of landforms and parent material that is unitless, and then normalized, run from 0 to 1.
thumbnail
This dataset is one of a dozen or so datasets that provide the basis for a vulnerability assessment of the Great Northern LCC that examines land use and climate changes at landscape scales, for the full LCC boundary. It represents terrestrially-defined adaptive capacity, where values run from 0 to 1.0 and is calculated as the complement of the degree of human modification (1-H). The original floating point values ranging from 0-1.0 were multiplied by 100 and converted to integer format for this dataset.


    map background search result map search result map GNLCC Projects Ecologically-relevant landforms for Great Northern LCC Ag: terrestrially defined adaptive capacity for Great Northern LCC Agp: combined measure of physiographic diversity (EH) and terrestrially-defined adaptive capacity (Ag) for Great Northern LCC Aw: hydrologically-defined adaptive capacity for Great Northern LCC Awp: combined measure of physiographic diversity (EH) and hydrologically-defined adaptive capacity (Aw) for Great Northern LCC EH: physiographic diversity of landforms and parent material for Great Northern LCC Vhg: terrestrially-defined vulnerability, biome velocity for Great Northern LCC Vhw: hydrologically-defined vulnerability, biome velocity for Great Northern LCC Vtg: terrestrially-defined vulnerability, temperature change for Great Northern LCC Vtw: hydrologically-defined vulnerability, temperature change for Great Northern LCC Vvg: terrestrially-defined vulnerability, climate velocity for Great Northern LCC Vvw: hydrologically-defined vulnerability, climate velocity for Great Northern LCC Ehv: climate velocity for Rehfeldt biome-habitat types (km/year). Et: temperature change (degrees C) from baseline (1950-2000) to future (2061-2080) for Great Northern LCC Ev: climate velocity (km/year) for Great Northern LCC Ecologically-relevant landforms for Great Northern LCC Vhw: hydrologically-defined vulnerability, biome velocity for Great Northern LCC Vvw: hydrologically-defined vulnerability, climate velocity for Great Northern LCC Ag: terrestrially defined adaptive capacity for Great Northern LCC Agp: combined measure of physiographic diversity (EH) and terrestrially-defined adaptive capacity (Ag) for Great Northern LCC Aw: hydrologically-defined adaptive capacity for Great Northern LCC Awp: combined measure of physiographic diversity (EH) and hydrologically-defined adaptive capacity (Aw) for Great Northern LCC EH: physiographic diversity of landforms and parent material for Great Northern LCC Vhg: terrestrially-defined vulnerability, biome velocity for Great Northern LCC Vtg: terrestrially-defined vulnerability, temperature change for Great Northern LCC Vvg: terrestrially-defined vulnerability, climate velocity for Great Northern LCC Ehv: climate velocity for Rehfeldt biome-habitat types (km/year). Et: temperature change (degrees C) from baseline (1950-2000) to future (2061-2080) for Great Northern LCC Ev: climate velocity (km/year) for Great Northern LCC GNLCC Projects Vtw: hydrologically-defined vulnerability, temperature change for Great Northern LCC