Skip to main content
Advanced Search

Filters: Tags: Hawaii (X) > Extensions: NetCDF OPeNDAP Service (X)

3 results (9ms)   

View Results as: JSON ATOM CSV
thumbnail
Here we present surface current results from a physics-based, 3-dimensional coupled ocean-atmosphere numerical model that was generated to understand coral larval dispersal patterns in Maui Nui, Hawaii, USA. The model was used to simulate coral larval dispersal patterns from a number of existing State-managed reefs and large tracks of reefs with high coral coverage that might be good candidates for marine-protected areas (MPAs) during 8 spawning events during 2010-2013. The goal of this effort is to provide geophysical data to help provide guidance to sustain coral health in Maui Nui, Hawaii, USA. Each model output run is available as a netCDF file with self-contained attribute information. Each file name is appended...
thumbnail
Clouds often come in contact with vegetation (often named fogs) within a certain elevation range on Hawai‘i’s mountains. Propelled by strong winds, cloud droplets are driven onto the stems and leaves of plants where they are deposited. Some of the water that accumulates on the plants in this way drips to the ground, adding additional water over and above the water supplied by rainfall. Prior observations show that the amount of cloud water intercepted by vegetation is substantial, but also quite variable from place to place. It is, therefore, important to create a map for the complex spatial patterns of cloud water interception (CWI) in Hawai‘i. In this project, we propose to create the CWI map at 0.8-km resolution...
thumbnail
Clouds often come in contact with vegetation (often named fogs) within a certain elevation range on Hawai‘i’s mountains. Propelled by strong winds, cloud droplets are driven onto the stems and leaves of plants where they are deposited. Some of the water that accumulates on the plants in this way drips to the ground, adding additional water over and above the water supplied by rainfall. Prior observations show that the amount of cloud water intercepted by vegetation is substantial, but also quite variable from place to place. It is, therefore, important to create a map for the complex spatial patterns of cloud water interception (CWI) in Hawai‘i. In this project, we propose to create the CWI map at 0.8-km resolution...


    map background search result map search result map Physics-based numerical circulation model outputs of ocean surface circulation during the 2010-2013 summer coral-spawning seasons in Maui Nui, Hawaii, USA Very fine resolution dynamically downscaled climate data for Hawaii Very fine resolution dynamically downscaled climate data for Hawaii Physics-based numerical circulation model outputs of ocean surface circulation during the 2010-2013 summer coral-spawning seasons in Maui Nui, Hawaii, USA Very fine resolution dynamically downscaled climate data for Hawaii Very fine resolution dynamically downscaled climate data for Hawaii