Skip to main content
Advanced Search

Filters: Tags: Hazards (X) > partyWithName: Metadata manager (X)

27 results (50ms)   

View Results as: JSON ATOM CSV
thumbnail
As part of the Department of Natural Resources (DNR) effort to make final recommendations of federal land parcels to be considered for selection by the State of Alaska according to provisions of the Statehood Act, a decision was made to identify and evaluate potential access corridors. Corridor maps were compiled for a total of 78 quadrangles throughout Alaska. This map suite shows relevant geologic information at a scale of 1:250,000 for 10-mile-wide corridors straddling centerlines for proposed access routes throughout Alaska. The maps are based on geologic data compiled from existing, published mapping. Each compiled corridor geology map was used to derive maps of potential construction materials, data quality,...
Tags: Alaska, State Of, Ambler River Quadrangle, Anchorage Quadrangle, Aufeis, Avalanche, All tags...
thumbnail
During 2009, the Alaska Division of Geological & Geophysical Surveys continued a program, begun in 2006, of reconnaissance mapping of surficial geology in the proposed natural-gas pipeline corridor through the upper Tanana River valley. The study area is a 12-mi-wide (19.3-km-wide) area that straddles the Alaska Highway from the western boundaries of the Tanacross B-3 and A-3 quadrangles near Tetlin Junction eastward to the eastern boundaries of the Nabesna D-1 and C-1 quadrangles along the Canada border. Mapping during 2008-2009 in the Tanacross and Nabesna quadrangles linked with the mapping completed in the Tanacross, Big Delta and Mt. Hayes quadrangles in 2006-2008. Surficial geology was initially mapped in...
thumbnail
This dataset contains information and locations on faults and associated folds in Alaska that are believed to be sources of M>6 earthquakes during the Quaternary (the past 1,600,000 years). The dataset is intended to part of the USGS archive for historic and ancient earthquake sources used in current and future probabilistic seismic-hazard analyses. This dataset presents a single source that summarizes important information on paleoseismic (ancient earthquakes) parameters including, age of most recent deformation, slip rate, slip sense dip direction, and accuracy of original mapping. These data are compiled from hundreds of journal articles, maps, theses, and other documents, as referenced herein. The geospatial...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired LiDAR (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. LiDAR data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired LiDAR (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. LiDAR data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired LiDAR (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. LiDAR data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired LiDAR (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. LiDAR data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired LiDAR (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. LiDAR data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired LiDAR (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. LiDAR data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In support of geologic mapping and hazards evaluation in and near Whittier, Alaska, the Division of Geological & Geophysical Surveys (DGGS) acquired, and is making publicly available, lidar (light detection and ranging) data for an area along Passage Canal, Portage Lake, and Portage Glacier Highway. The lidar data, acquired and processed by Watershed Sciences, Inc. (WSI) consist of continuous coverage encompassing an area extending from Portage Lake eastward to Logging Company Bay in Passage Canal in the Seward D-4, D-5, and D-6 1:63,360-scale quadrangles. Lidar data collected below 1,600 ft (488 m) elevation have a minimum average pulse density of 8 pulses/square meter; above 1,600 ft (488 m) data were collected...
thumbnail
Alaska is the most seismically active region of the United States. However, little information exists on the location, style of deformation, and slip rates of Quaternary faults. This interactive map displays locations and relative activity of Alaska's faults and folds. The map offers zoom and scroll options, and multiple base map layers. Click individual fault and fold traces to view basic fault parameters: name, age, slip rate, slip sense, dip direction, mapping certainty, and mapped scale. This resource is intended to provide simple and quick means of visualizing structure locations and characteristics. Users must recognize mapping certainty and data accuracy limitations when zooming in farther than the stated...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired LiDAR (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. LiDAR data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired LiDAR (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. LiDAR data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired LiDAR (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. LiDAR data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired LiDAR (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. LiDAR data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired LiDAR (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. LiDAR data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
The 2009 eruption of Redoubt Volcano included 19 major tephra-producing explosions. Mass per unit area (MPUA) ash fall sampling of the resulting deposits allowed us to create isomass contours of the ash fall. This dataset contains the vector digital shapefiles of the ash fall contours for the explosive events. In addition, a point digital shapefile is included that describes more than 400 ash fall samples that were collected. For a detailed account of the 2009 eruption of Redoubt Volcano, see Schaefer, J.R., ed., 2012, The 2009 eruption of Redoubt Volcano, Alaska, with contributions by Bull, Katharine, Cameron, Cheryl, Coombs, Michelle, Diefenbach, Angie, Lopez, Taryn, McNutt, Steve, Neal, Christina, Payne, Allison,...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired LiDAR (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. LiDAR data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired LiDAR (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. LiDAR data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired LiDAR (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. LiDAR data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...


map background search result map search result map Quaternary Faults and Folds (QFF) Survey of geology, geologic materials, and geologic hazards in proposed access corridors in selected quadrangles, Alaska Quaternary faults and folds in Alaska: A digital database Ash fall contour map of the 2009 eruption of Redoubt Volcano, Alaska: Digital shapefiles of contours and sample locations Engineering-geologic map of the Alaska Highway corridor, Tetlin Junction to Canada border, Alaska High-resolution lidar data for infrastructure corridors, Tanacross Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Nabesna Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Big Delta Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Fairbanks Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Bettles Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Talkeetna Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Livengood Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Healy Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Talkeetna Mountains Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Gulkana Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Valdez Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Chandalar Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Philip Smith Mountains Quadrangle, Alaska High-resolution lidar data for Alaska infrastructure corridors High-resolution lidar data for the Whittier area, Passage Canal, and Portage Lake, Alaska High-resolution lidar data for the Whittier area, Passage Canal, and Portage Lake, Alaska High-resolution lidar data for infrastructure corridors, Tanacross Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Nabesna Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Big Delta Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Fairbanks Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Bettles Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Talkeetna Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Livengood Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Healy Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Talkeetna Mountains Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Gulkana Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Valdez Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Chandalar Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Philip Smith Mountains Quadrangle, Alaska Ash fall contour map of the 2009 eruption of Redoubt Volcano, Alaska: Digital shapefiles of contours and sample locations High-resolution lidar data for Alaska infrastructure corridors Survey of geology, geologic materials, and geologic hazards in proposed access corridors in selected quadrangles, Alaska Engineering-geologic map of the Alaska Highway corridor, Tetlin Junction to Canada border, Alaska Quaternary faults and folds in Alaska: A digital database Quaternary Faults and Folds (QFF)