Skip to main content
Advanced Search

Filters: Tags: Hazards (X)

350 results (13ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
We used the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST; Warner and others, 2010) model to simulate ocean circulation, waves, and sediment transport in Barnegat Bay, New Jersey, during Hurricane Sandy. The simulation period was from October 27 to November 4, 2012. Initial conditions for the salinity and temperature fields in the domain were acquired from a 7-month simulation of the same domain (Defne and Ganju, 2018). We used a 2012 digital terrain model (Andrews and others, 2015) to prescribe the prestorm bathymetry. Wetting and drying was enabled, wave-current interaction was modeled with a boundary-layer formulation accounting for the apparent roughness of waves, and the vortex force formulation...
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: CMG_Portal, Earth Science > Human Dimensions > Natural Hazards > Floods, Earth Science > Oceans > Marine Sediments >Sediment Transport, Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Atlantic Ocean, Barrier Island, Bayesian Network, CMGP, Coastal Erosion, All tags...
thumbnail
This section of the data release includes core images in the format of photos (JPG) that have been compressed into a zipped file (2018LakePowellCoring_CorePhotos.zip). It is Part 4 (of four) in this data release and contains images of the cleaned archival half from split cores as they appeared immediately after splitting (late March and early April 2019). Each photo includes a ruler (in centimeters) and X-Rite ColorChecker Classic color correction card that may be used for corrections. Drillhole information, such as location and total recovery, are outlined in “Part 1 – Drillhole information from the 2018 coring project in Lake Powell, Utah” (2018LakePowellCoring_DrillholeInfo.csv) of this data release. Each drillhole...
Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Animas River, Antelope Canyon, Bears Ears National Monument, Bullfrog, Bullfrog Bay, All tags...
Geologic, geologic hazard, and geotechnical reports submitted by county and municipal planners and school districts to the Colorado Geological Survey for review as part of land development applications.
thumbnail
The St. Louis area has experienced minor earthquake damage at least 12 times in the past 205 years. The St. Louis metropolitan area, with a population of about 2.8 million, faces earthquake hazard from large earthquakes in the New Madrid and Wabash Valley seismic zones, as well as a closer region of diffuse historical and prehistoric seismicity to its south and east. Also, low attenuation of seismic energy in the region and a substantial number of historic older unreinforced brick and stone buildings make the St. Louis area vulnerable to moderate earthquakes at relatively large distances compared to the western United States. This geotechnical database was compiled by James Palmer and others at the Missouri Department...
thumbnail
This data release provides the locations and certain key metrics of landslide features offshore southern California, including landslide perimeters, scarps, evacuation zones, debris aprons, and slide-prone areas in geographic information system (GIS) shapefile format. The offshore region of southern California is a tectonically active area that includes more than 20 fault-bounded basins and ridges that are subject to various types of mass-wasting and landslide processes. The collection of high-resolution seafloor mapping data offshore southern California, mostly within the last 25 years, provide a new data set that forms the basis for the identification and mapping of landslides and slide-related features throughout...
thumbnail
This data set consists of physics-based Delft3D-FLOW and SWAN hydrodynamic models input files used to study the wave-induced 3D flow over spur-and-groove (SAG) formations. SAG are a common and impressive characteristic of coral reefs. They are composed of a series of submerged shore-normal coral ridges (spurs) separated by shore-normal patches of sediment (grooves) on the fore reef of coral reef environments. Although their existence and geometrical properties are well documented, the literature concerning the hydrodynamics around them is sparse. Here, the three-dimensional flow patterns over SAG formations, and a sensitivity of those patterns to waves, currents, and SAG geometry were examined. Shore-normal shoaling...
thumbnail
Projected wave climate trends from WAVEWATCH3 model output were used as input for nearshore wave models (for example, SWAN) for the main Hawaiian Islands to derive data and statistical measures (mean and top 5 percent values) of wave height, wave period, and wave direction for the recent past (1996-2005) and future projections (2026-2045 and 2085-2100). Three-hourly global climate model (GCM) wind speed and wind direction output from four different GCMs provided by the Coupled Model Inter-Comparison Project, phase 5 (CMIP5), were used as boundary conditions to the physics-based WAVEWATCH3 numerical wave model for the area encompassing the main Hawaiian islands. Two climate change scenarios for each of the four GCMs...
thumbnail
A set of physics-based XBeach Non-hydrostatic hydrodynamic model simulations (with input files here included) were used to evaluate how varying carbonate budgets, and thus coral reef accretion and degradation, affect alongshore variations in wave-driven water levels along the adjacent shoreline of Buck Island Reef National Monument (BUIS) for a number of sea-level rise scenarios, specifically during extreme wave conditions when the risk for coastal flooding and the resulting impact to coastal communities is greatest. These input files accompany the modeling conducted for the following publication: Toth, L.T., Storlazzi, C.D., Kuffner, I.B., Quataert, E., Reyns, J., McCall, R.T., Stathakopoulos, A., Hillis-Starr,...
thumbnail
Presented here is a point cloud collected by the U.S. Geological Survey (USGS) using an oblique plane-mounted camera system, covering the area of the Mud Creek landslide on California State Route 1 (SR1), Mud Creek, Big Sur, California. The point cloud is referenced to previously published lidar data and contains RGB information as well as XYZ. Point cloud coordinates are in NAD83 UTM Zone 10 meters. Imagery was collected with a Nikon D800 camera in RAW format and processed using structure-from-motion photogrammetry with Agisoft PhotoScan version 1.2.8 through 1.3.2. Pointclouds were clipped to an AOI using LASTools. The AOI was created from a KMZ in Google Earth and transformed to a shapefile using ArcMap 10.5.
Tags: Bathymetry and Elevation, Big Sur, CMHRP, California, Cape San Martin, All tags...
This data release presents a peak-flow frequency analysis (Eash and others, 2013) for U.S. Geological Survey streamgage 06810000 Nishnabotna River above Hamburg, Iowa. These methods are used to provide estimates of peak-flow quantiles for 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (AEPs). Annual peak-flow data used in the peak-flow frequency analysis for this streamgage was retrieved from the U.S. Geological Survey National Water Information System database (U.S. Geological Survey, 2021) and used with USGS flood-frequency analysis software PeakFQ (Veilleux and others, 2014). This data release contains annual peak-flow data (nishnabotna_2020_WATSTORE.txt), PeakFQ specifications...
thumbnail
This data release contains extent shapefiles for 16 hypothetical slope failure scenarios for a landslide complex at Barry Arm, western Prince William Sound, Alaska. The landslide is likely active due to debuttressing from the retreat of Barry Glacier (Dai and others, 2020) and sits above Barry Arm, posing a tsunami risk in the event of slope failure (Barnhart and others, 2021). Since discovery of the landslide by a citizen scientist in 2020, kinematic structural elements have been mapped (Coe and others, 2020) and ground-based and satellite synthetic aperture radar (SAR) have been used to track ongoing movement at a high spatial resolution (Schaefer and others, 2020; Schaefer and others, 2022). These efforts have...
thumbnail
This Data Release contains three related databases for the Central and Eastern United States: 1) A fault sections database (“NSHM2023_FaultSections_CEUS_v1”), which depicts the geometry of faults capable of hosting independent earthquakes, 2) A fault zone polygon database ("NSHM2023_FaultPolygons_CEUS_v1"), which depicts the geometry of distributed fault zones capable of hosting repeated large magnitude events but a specific fault source remains unidentified, and 3) An earthquake geology site information database (“NSHM2023_EQGeoDB_CEUS_v1”), which contains fault slip-rate and earthquake recurrence constraints at points. These databases were prepared in anticipation of updates to the National Seismic Hazard Model...
thumbnail
This child item data set provides high-resolution, nearshore, spatial water-quality data collected from Skaneateles Lake, New York, on August 23, 2018. All data are reported as raw measured values. Continuous water-quality monitors were mounted to a boat at approximately 0.5-meters below the water surface and used to measure nitrate, chlorophyll fluorescence (fChl), fluorescent dissolved organic matter (fDOM), dissolved oxygen, specific conductance, phycocyanin fluorescence (fPC), turbidity, pH, and temperature.


map background search result map search result map Dynamically downscaled future wave projections from SWAN model results for the main Hawaiian Islands Structure-from-motion point cloud of Mud Creek, Big Sur, California, 2017-06-26 USGS Barnegat Bay storm filtered hydrodynamic model for Hurricane Sandy (nonStorm) SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters (landcover, geomorphic setting, substrate type, vegetation density, and vegetation type): Cedar Island, VA, 2013–2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Edwin B. Forsythe NWR, NJ, 2013–2014 Digital maps of submarine landslides and mass wasting features offshore of southern California Landslide scarps offshore of Southern California, 2023 Landslide evacuation zones offshore of Southern California, 2023 Part 4 – Photographs of sediment cores collected in 2018 from Lake Powell, Utah Peak-flow frequency analysis for U.S. Geological Survey streamgage 06810000 Nishnabotna River above Hamburg, Iowa, in the Nishnabotna River Basin, Iowa, based on data through water year 2020 Skaneateles Lake, New York spatial water-quality data, August 23, 2018 Earthquake geology inputs for the National Seismic Hazard Model (NSHM) 2023 (central and eastern United States), version 1.0 WATSTORE Peak flow data for peak-flow frequency analyses for selected streamgages on the Bighorn, Tongue, and Lower Yellowstone Rivers and tributaries and Home Creek, Montana, based on data through water year 2021 Model parameter input files to compare the influence of coral reef carbonate budgets on alongshore variations in wave-driven total water levels on Buck Island Reef National Monument WATSTORE Peak-flow frequency analyses for selected streamgages in Dawson and Richland Counties, and the Powder River Basin, Montana, based on data through water year 2022 PeakFQ version 7.4 specifications file for peak-flow frequency analyses for selected streamgages in Dawson and Richland Counties, and the Powder River Basin, Montana, based on data through water year 2022 St. Louis Geotechnical Database, v2003 Hypothetical landslide failure extents for hazard assessment, Barry Arm, western Prince William Sound, Alaska Structure-from-motion point cloud of Mud Creek, Big Sur, California, 2017-06-26 Hypothetical landslide failure extents for hazard assessment, Barry Arm, western Prince William Sound, Alaska Model parameter input files to compare the influence of coral reef carbonate budgets on alongshore variations in wave-driven total water levels on Buck Island Reef National Monument SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters (landcover, geomorphic setting, substrate type, vegetation density, and vegetation type): Cedar Island, VA, 2013–2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Edwin B. Forsythe NWR, NJ, 2013–2014 USGS Barnegat Bay storm filtered hydrodynamic model for Hurricane Sandy (nonStorm) St. Louis Geotechnical Database, v2003 Peak-flow frequency analysis for U.S. Geological Survey streamgage 06810000 Nishnabotna River above Hamburg, Iowa, in the Nishnabotna River Basin, Iowa, based on data through water year 2020 Part 4 – Photographs of sediment cores collected in 2018 from Lake Powell, Utah WATSTORE Peak-flow frequency analyses for selected streamgages in Dawson and Richland Counties, and the Powder River Basin, Montana, based on data through water year 2022 PeakFQ version 7.4 specifications file for peak-flow frequency analyses for selected streamgages in Dawson and Richland Counties, and the Powder River Basin, Montana, based on data through water year 2022 Landslide evacuation zones offshore of Southern California, 2023 Digital maps of submarine landslides and mass wasting features offshore of southern California Landslide scarps offshore of Southern California, 2023 WATSTORE Peak flow data for peak-flow frequency analyses for selected streamgages on the Bighorn, Tongue, and Lower Yellowstone Rivers and tributaries and Home Creek, Montana, based on data through water year 2021 Dynamically downscaled future wave projections from SWAN model results for the main Hawaiian Islands Earthquake geology inputs for the National Seismic Hazard Model (NSHM) 2023 (central and eastern United States), version 1.0