Skip to main content
Advanced Search

Filters: Tags: Headwater Streams (X) > Date Range: {"choice":"year"} (X)

5 results (8ms)   

Filters
Date Types (for Date Range)
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This data release contains three data types that could potentially be used to infer spatiotemporal variability in groundwater discharge processes, along with other research and monitoring purposes: 1) Temporally continuous stream channel water temperature and adjacent streambank air temperature time series data (generally starting November 2020) as well as limited temperature data from May to October 2022 from select seeps and springs; 2) Discrete stable isotope data collected from stream water (May 2021, October/November 2021, May 2022, October/November 2022); and 3) Discrete dissolved radon gas data from stream water (collected May 2021 and May 2022). Data were collected at 51 temporary stations installed along...
thumbnail
The Upper Delaware River is a unique example of an aquatic system where summer river temperature is actively managed for ecological purposes. River temperature at the mainstem Delaware River at Lordville, NY gage (USGS 01427207) is targeted to remain below 25°C, with warm events potentially mitigated via directed upstream reservoir releases, a process guided by predictive tools. These directed releases currently occur at the Cannonsville Dam on the West Branch, though the temperature criteria at the Lordville gage is also influenced by releases from the Pepacton Dam on the east branch. To increase the spatial resolution of summer river temperature data available for understanding river temperature processes and...
thumbnail
This data release documents streambed sediment thickness in the Neversink watershed (NY) as determined by field observations and HVSR passive seismic measurements, and were collected as an extension of a previous data set collected in the same watershed (see Associated Items). These measurements were made between May 17, 2021 and May 21, 2021 using MOHO Tromino three-component seismometers (MOHO, S.R.L.). Seismic observations were converted to sediment thickness (depth to bedrock, meters) using the horizontal-to-vertical spectral ratio (HVSR) method. Resonance frequencies were determined from time domain data using GRILLA (MOHO, S.R.L.) software and converted to inferred depth to bedrock for a range of possible...
AbstractWe analyzed the associations of catchment-scale and riparian-scale environmental factors with occurrence of Brook Trout Salvelinus fontinalis in Connecticut headwater stream segments with catchment areas of <15 km2 . A hierarchical Bayesian approach was applied to a statewide stream survey data set, in which Brook Trout detection probability was incorporated and statistical significance of environmental covariates was based on 95% credible intervals of estimated coefficients that did not overlap a value of zero. Forested land at the catchment scale was the most important covariate affecting Brook Trout occurrence; i.e., heavily forested catchments with corresponding low levels of developed and impervious...
What will the rivers of the Pacific Northwest look like in the future? Will they be stable or unstable? Will the waters be cold and clear or warm and muddy? Will they have salmon or other species? These questions motivated our two-year study of climate warming effects on headwater streams draining the Cascade Mountains. Using a novel combination of snow, geohydrology, and sediment transport models we assessed the vulnerability of stream channels to changing peak streamflow. Our snow modeling shows that with just a 2°C warming, snowfall shifts to rainfall at all elevations, peak snowpacks occur over two months earlier, and snowpacks are reduced by over half of historical values. Our geohydrology modeling shows that...


    map background search result map search result map Depth to bedrock determined from passive seismic measurements, Neversink River watershed, NY (USA) Main channel river water temperature collected along the East Branch, West Branch, and mainstem Delaware River near Handcock, NY, USA in summer 2021 Stream Temperature, Dissolved Radon, and Stable Water Isotope Data Collected along Headwater Streams in the Upper Neversink River Watershed, NY, USA (ver. 2.0, April 2023) Stream Temperature, Dissolved Radon, and Stable Water Isotope Data Collected along Headwater Streams in the Upper Neversink River Watershed, NY, USA (ver. 2.0, April 2023) Depth to bedrock determined from passive seismic measurements, Neversink River watershed, NY (USA) Main channel river water temperature collected along the East Branch, West Branch, and mainstem Delaware River near Handcock, NY, USA in summer 2021