Skip to main content
Advanced Search

Filters: Tags: Honolulu County (X) > Types: Shapefile (X)

6 results (40ms)   

View Results as: JSON ATOM CSV
thumbnail
The travel time map was generated using the Pedestrian Evacuation Analyst model from the USGS (https://geography.wr.usgs.gov/science/vulnerability/tools.html). The travel time analysis uses ESRI's Path Distance tool to find the shortest distance across a cost surface from any point in the hazard zone to a safe zone. This cost analysis considers the direction of movement and assigns a higher cost to steeper slopes, based on a table contained within the model. The analysis also adds in the energy costs of crossing different types of land cover, assuming that less energy is expended walking along a road than walking across a sandy beach. To produce the time map, the evacuation surface output from the model is grouped...
thumbnail
The travel time map was generated using the Pedestrian Evacuation Analyst model from the USGS (https://geography.wr.usgs.gov/science/vulnerability/tools.html). The travel time analysis uses ESRI's Path Distance tool to find the shortest distance across a cost surface from any point in the hazard zone to a safe zone. This cost analysis considers the direction of movement and assigns a higher cost to steeper slopes, based on a table contained within the model. The analysis also adds in the energy costs of crossing different types of land cover, assuming that less energy is expended walking along a road than walking across a sandy beach. To produce the time map, the evacuation surface output from the model is grouped...
thumbnail
The travel time map was generated using the Pedestrian Evacuation Analyst model from the USGS (https://geography.wr.usgs.gov/science/vulnerability/tools.html). The travel time analysis uses ESRI's Path Distance tool to find the shortest distance across a cost surface from any point in the hazard zone to a safe zone. This cost analysis considers the direction of movement and assigns a higher cost to steeper slopes, based on a table contained within the model. The analysis also adds in the energy costs of crossing different types of land cover, assuming that less energy is expended walking along a road than walking across a sandy beach. To produce the time map, the evacuation surface output from the model is grouped...
thumbnail
The travel time map was generated using the Pedestrian Evacuation Analyst model from the USGS (https://geography.wr.usgs.gov/science/vulnerability/tools.html). The travel time analysis uses ESRI's Path Distance tool to find the shortest distance across a cost surface from any point in the hazard zone to a safe zone. This cost analysis considers the direction of movement and assigns a higher cost to steeper slopes, based on a table contained within the model. The analysis also adds in the energy costs of crossing different types of land cover, assuming that less energy is expended walking along a road than walking across a sandy beach. To produce the time map, the evacuation surface output from the model is grouped...
thumbnail
The travel time map was generated using the Pedestrian Evacuation Analyst model from the USGS (https://geography.wr.usgs.gov/science/vulnerability/tools.html). The travel time analysis uses ESRI's Path Distance tool to find the shortest distance across a cost surface from any point in the hazard zone to a safe zone. This cost analysis considers the direction of movement and assigns a higher cost to steeper slopes, based on a table contained within the model. The analysis also adds in the energy costs of crossing different types of land cover, assuming that less energy is expended walking along a road than walking across a sandy beach. To produce the time map, the evacuation surface output from the model is grouped...
thumbnail
The travel time map was generated using the Pedestrian Evacuation Analyst model from the USGS (https://geography.wr.usgs.gov/science/vulnerability/tools.html). The travel time analysis uses ESRI's Path Distance tool to find the shortest distance across a cost surface from any point in the hazard zone to a safe zone. This cost analysis considers the direction of movement and assigns a higher cost to steeper slopes, based on a table contained within the model. The analysis also adds in the energy costs of crossing different types of land cover, assuming that less energy is expended walking along a road than walking across a sandy beach. To produce the time map, the evacuation surface output from the model is grouped...


    map background search result map search result map Tsunami evacuation time map for the island of O'ahu, Hawai'i, standard tsunami evacuation zone and impaired walk speed Tsunami evacuation time map for the island of O'ahu, Hawai'i, standard tsunami evacuation zone and slow walk speed Tsunami evacuation time map for the island of O'ahu, Hawai'i, standard tsunami evacuation zone and fast walk speed Tsunami evacuation time map for the island of O'ahu, Hawai'i, extreme tsunami evacuation zone and impaired walk speed Tsunami evacuation time map for the island of O'ahu, Hawai'i, extreme tsunami evacuation zone and slow walk speed Tsunami evacuation time map for the island of O'ahu, Hawai'i, extreme tsunami evacuation zone and fast walk speed Tsunami evacuation time map for the island of O'ahu, Hawai'i, standard tsunami evacuation zone and slow walk speed Tsunami evacuation time map for the island of O'ahu, Hawai'i, extreme tsunami evacuation zone and slow walk speed Tsunami evacuation time map for the island of O'ahu, Hawai'i, standard tsunami evacuation zone and impaired walk speed Tsunami evacuation time map for the island of O'ahu, Hawai'i, extreme tsunami evacuation zone and impaired walk speed Tsunami evacuation time map for the island of O'ahu, Hawai'i, standard tsunami evacuation zone and fast walk speed Tsunami evacuation time map for the island of O'ahu, Hawai'i, extreme tsunami evacuation zone and fast walk speed