Skip to main content
Advanced Search

Filters: Tags: Hydraulics (X) > Extensions: Citation (X)

4 results (7ms)   

View Results as: JSON ATOM CSV
Severe droughts have been associated with regional-scale forest mortality worldwide. Climate change is expected to exacerbate regional mortality events; however, prediction remains difficult because the physiological mechanisms underlying drought survival and mortality are poorly understood. We developed a hydraulically based theory considering carbon balance and insect resistance that allowed development and examination of hypotheses regarding survival and mortality. Multiple mechanisms may cause mortality during drought. A common mechanism for plants with isohydric regulation of water status results from avoidance of drought-induced hydraulic failure via stomatal closure, resulting in carbon starvation and a cascade...
Although our current (1990) knowledge of hydrologic and hydraulic processes is based on many years of study, there are river environments where these processes are complex and poorly understood. One of these environments is in mountainous areas, which cover about 25 percent of the United States. Use of conventional hydrologic and hydraulic techniques in mountain-river environments may produce erroneous results and interpretations in a wide spectrum of water-resources investigations. An ongoing U.S. Geological Survey research project is being conducted to improve the understanding of hydrologic and hydraulic processes of mountainous areas and to improve the results of subsequent hydrologic investigations. Future...