Skip to main content
Advanced Search

Filters: Tags: Illinois (X) > Types: OGC WMS Layer (X)

257 results (12ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
This dataset provides shapefile outlines of the 7,150 lakes that had temperature modeled as part of this study. The format is a shapefile for all lakes combined (.shp, .shx, .dbf, and .prj files). A csv file of lake metadata is also included. This dataset is part of a larger data release of lake temperature model inputs and outputs for 7,150 lakes in the U.S. states of Minnesota and Wisconsin (http://dx.doi.org/10.5066/P9CA6XP8).
thumbnail
Near-surface site characteristics are critical for accurately modeling ground motion, which in turn influences seismic hazard analysis and design of critical infrastructure. Currently, there are many strong motion accelerometers within the Advanced National Seismic System (ANSS) that are missing this information. We use a Geographic Information Systems (GIS) based framework to intersect the site coordinates of approximately 5,500 ANSS accelerometers located throughout the United States and its territories with geology and velocity information. We consider: (1) surficial geology from digitized geologic maps (Horton, 2017; Wilson et al., 2015; Sherrod et al., 2007; Bawiec, 1999; Saucedo, 2005; Bedrossian et al., 2012;...
Categories: Data; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: ANSS, Alabama, American Samoa, Arizona, Arkansas, All tags...
thumbnail
These data were collected using a 1200 kHz TRDI Rio Grande acoustic Doppler current profiler (ADCP) in mode 12 with 25 centimeter bins from a moving boat. The data were georeferenced with a Hemisphere Crescent A100 differential Global Positioning System (GPS) receiver with submeter accuracy. The data have been depth-averaged over the entire measured portion of the water column and temporally averaged over 5-second intervals to reduce noise. These data were collected by the U.S. Geological Survey (USGS) concurrently with environmental DNA (eDNA) sampling in this reach of the Chicago Sanitary and Ship Canal (CSSC) by the U.S. Fish and Wildlife Service (USFWS). Data were processed using the Velocity Mapping Toolbox...
thumbnail
These data were collected using a 1200 kHz TRDI Rio Grande acoustic Doppler current profiler (ADCP) in mode 12 with 25 centimeter bins from a moving boat. The data were georeferenced with a Hemisphere Crescent A100 differential Global Positioning System (GPS) receiver with submeter accuracy. The data have been layer-averaged over the lower portion of the water column (0 to 4 meters above the bed). These data were collected by the U.S. Geological Survey (USGS) concurrently with environmental DNA (eDNA) sampling in this reach of the Chicago Sanitary and Ship Canal by the U.S. Fish and Wildlife Service (USFWS). Data were processed using the Velocity Mapping Toolbox (Parsons and others, 2013). NOTE: Any data assigned...
thumbnail
ADCP data were collected on November 4, 2015 at the confluence of the Illinois River and Fox River near Ottawa, IL using a Teledyne Rio Grande 1200 kHz Acoustic Doppler Current Profiler with integrated Trimble Ag162 GPS. ADCP data was collected in reciprocal pairs along cross-sections. The data are provided in: (1) a zipped folder containing classic ascii output files exported from WinRiverII software, and a README text file indicating which files are reciprocal pairs (2) a zipped folder containing KML files for each transect.
thumbnail
ADCP data were collected on two separate occasions (May 14-15, 2013 and May 28, 2013) in the Marseilles Pool on the Illinois River using a Teledyne Rio Grande 1200 kHz Acoustic Doppler Current Profiler with integrated Trimble GPS. ADCP data was collected in reciprocal pairs along cross-sections and along roughly streamwise oriented lines between cross-sections. The data are provided in: (1) a zipped folder containing classic ascii output files exported from WinRiverII software, and a README text file indicating which files are reciprocal pairs, and which files are streamwise oriented lines (2) a zipped folder containing KML files for each transect.
thumbnail
In support of U.S. Geological Survey invasive carp research examining aggregations of invasive carp in the tail water of dams, water velocity measurements were made at cross sections in the Illinois River below Starved Rock Lock and Dam on June 16, 2021. A total of 16 cross sections were surveyed, with two transects per cross section. Water depth and crew safety limited the extent of the survey. The discharge in the Illinois River at Starved Rock Lock and Dam at the time of data collection was approximately 185.7 cubic meters per second. The data were processed in the Velocity Mapping Toolbox (VMT) v.4.09 (Parsons and others, 2013) to obtain a depth-averaged velocity field for each cross section from paired transects...
thumbnail
Synopsis: This article outlines how wetlands can significantly reduce flooding in the Upper Mississippi watershed. The authors first provide a historical context by estimating the original and lost wetland storage capacities of the Upper Mississippi and Missouri River Basins. Historically, about 10% of the basin would have been classified as wetland in 1780. By 1980, wetland acreage had been reduced to only 4% of the basin, representing about 26 million acres of wetlands eliminated since 1780. The area of wetland restoration required to reduce the risk of future flooding adequately was estimated based on the total amount of excess floodwater beyond bank-full discharge that passed through the City of St. Louis during...
thumbnail
This data set represents the extent, approximate location and type of wetlands and deepwater habitats in the United States and its Territories. These data delineate the areal extent of wetlands and surface waters as defined by Cowardin et al. (1979). Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and near shore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their...
Categories: Data; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Academics & scientific researchers, Alabama, Alabama, Alaska, Arizona, All tags...
LiDAR data is remotely sensed high-resolution elevation data collected by an airborne collection platform. Using a combination of laser rangefinding, GPS positioning and inertial measurement technologies; LiDAR instruments are able to make highly detailed Digital Elevation Models (DEMs) of the earth's terrain, man-made structures and vegetation.
The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) has created high-resolution land cover/use data sets for the Upper Mississippi River System (UMRS). Aerial images of Pools 1-13 Upper Mississippi River System and Pools, Alton-Marseilles, Illinois River were collected in color infrared (CIR) in August of 2010 at 8”/pixel and 16”/pixel respectively using a mapping-grade Applanix DSS 439 digital aerial camera. In August 2011, CIR aerial images of Pools 14-Open River South, Upper Mississippi River and Pools Dresden-Lockport, Illinois River were collected at 16”/pixel with the same camera. The CIR aerial images were interpreted and automated using a 31-class LTRM vegetation classification....
The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) has created high-resolution land cover/use data sets for the Upper Mississippi River System (UMRS) from 1:15,000-scale color infrared aerial photos. These data have been used to create a variety of products, one of which is a data set used to classify aquatic areas. The 1989 and 1991 aquatic areas data sets were created by first generalizing the available land cover/use data into a land/water data set, then reinterpreting the aerial photography within the areas classified as water to determine the type of aquatic area. The geographic extent of the UMRS is the Mississippi River floodplain from Cairo, IL to Minneapolis, MN and the Illinois...
The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) has created high-resolution land cover/use data sets for the Upper Mississippi River System (UMRS) from 1:15,000-scale color infrared aerial photos. These data have been used to create a variety of products, one of which is a data set used to classify aquatic areas. The 1989 and 1991 aquatic areas data sets were created by first generalizing the available land cover/use data into a land/water data set, then reinterpreting the aerial photography within the areas classified as water to determine the type of aquatic area. The geographic extent of the UMRS is the Mississippi River floodplain from Cairo, IL to Minneapolis, MN and the Illinois...
The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) has created high-resolution land cover/use data sets for the Upper Mississippi River System (UMRS) from 1:15,000-scale color infrared aerial photos. These data have been used to create a variety of products, one of which is a data set used to classify aquatic areas. The 1989 and 1991 aquatic areas data sets were created by first generalizing the available land cover/use data into a land/water data set, then reinterpreting the aerial photography within the areas classified as water to determine the type of aquatic area. The geographic extent of the UMRS is the Mississippi River floodplain from Cairo, IL to Minneapolis, MN and the Illinois...
The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) has created high-resolution land cover/use data sets for the Upper Mississippi River System (UMRS) from 1:15,000-scale color infrared aerial photos. These data have been used to create a variety of products, one of which is a data set used to classify aquatic areas. The 1989 and 1991 aquatic areas data sets were created by first generalizing the available land cover/use data into a land/water data set, then reinterpreting the aerial photography within the areas classified as water to determine the type of aquatic area. The geographic extent of the UMRS is the Mississippi River floodplain from Cairo, IL to Minneapolis, MN and the Illinois...
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental...
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental...
thumbnail
As part of Upper Mississippi River Restoration (UMRR), the U.S. Army Corps of Engineers (USACE) is conducting a study to understand what environmental factors are contributing to the failure of floodplain forests to regenerate. This dataset uses lidar derivatives to identify broken forest canopy along the Mississippi River and Illinois River. A broken forest refers to an area that has a canopy height of greater than or equal to 10 meters. From this layer, forest canopy gaps can be identified by locating areas within the broken forest that have at least a 9.144 meter radius, or a 1-tree gap.
thumbnail
As part of Upper Mississippi River Restoration (UMRR), the U.S. Army Corps of Engineers (USACE) is conducting a study to understand what environmental factors are contributing to the failure of floodplain forests to regenerate. This dataset uses lidar derivatives to identify broken forest canopy along the Mississippi River and Illinois River. A broken forest refers to an area that has a canopy height of greater than or equal to 10 meters. From this layer, forest canopy gaps can be identified by locating areas within the broken forest that have at least a 9.144 meter radius, or a 1-tree gap.


map background search result map search result map Flood reduction through wetand restoration: the Upper Mississippi River Basin as a case history. Illinois River, Brandon Pool 0.5m, Elwood Quad, Contours Velocity Mapping in the Marseilles Pool of the Illinois River with ADCP Velocity Mapping at the confluence of the Illinois River and Fox River near Ottawa, IL Spatial distribution of depth-averaged velocity measured in the Chicago Sanitary and Ship Canal, Chicago, IL (December 7, 2010) Spatial distribution of layer-averaged velocity (0-4 m above the bed) measured in the ACL slip on the Chicago Sanitary and Ship Canal near Lemont, IL (December 7, 2010) UMRR Mississippi River Navigation Pool 14 Bathymetry Footprint UMRR Mississippi River Navigation Pool 15 Bathymetry Footprint Ports of the United States National Wetlands Inventory - Wetlands UMRR HNA-II 1989 Aquatic Areas - Upper Mississippi River System - Mississippi River Pool 20 UMRR HNA-II 1989 Aquatic Areas - Upper Mississippi River System - Illinois River Lockport Pool UMRR HNA-II 1989 Aquatic Areas - Upper Mississippi River System - Mississippi River Pool 12 UMRR HNA-II 1989 Aquatic Areas - Upper Mississippi River System - Mississippi River Pool 15 UMRR HNA-II 2010/11 Aquatic Areas - Upper Mississippi River System - Illinois River Starved Rock Pool Process-based water temperature predictions in the Midwest US: 1 Spatial data (GIS polygons for 7,150 lakes) Broken Forest Canopy Identified by Lidar for the Navigational Pool 13 of the Mississippi River Broken Forest Canopy Identified by Lidar for the Navigational Pool 24 of the Mississippi River Compilation of Geologic and Seismic Velocity Characteristics at Advanced National Seismic System Strong Motion Accelerometer Sites Velocity Survey at Cross Sections in the Illinois River below Starved Rock Lock and Dam near Utica, Illinois, June 16, 2021 Velocity Survey at Cross Sections in the Illinois River below Starved Rock Lock and Dam near Utica, Illinois, June 16, 2021 Velocity Mapping at the confluence of the Illinois River and Fox River near Ottawa, IL Illinois River, Brandon Pool 0.5m, Elwood Quad, Contours UMRR Mississippi River Navigation Pool 15 Bathymetry Footprint UMRR HNA-II 1989 Aquatic Areas - Upper Mississippi River System - Mississippi River Pool 15 UMRR HNA-II 2010/11 Aquatic Areas - Upper Mississippi River System - Illinois River Starved Rock Pool Spatial distribution of layer-averaged velocity (0-4 m above the bed) measured in the ACL slip on the Chicago Sanitary and Ship Canal near Lemont, IL (December 7, 2010) UMRR HNA-II 1989 Aquatic Areas - Upper Mississippi River System - Mississippi River Pool 20 UMRR HNA-II 1989 Aquatic Areas - Upper Mississippi River System - Mississippi River Pool 12 Broken Forest Canopy Identified by Lidar for the Navigational Pool 24 of the Mississippi River UMRR HNA-II 1989 Aquatic Areas - Upper Mississippi River System - Illinois River Lockport Pool National Wetlands Inventory - Wetlands Flood reduction through wetand restoration: the Upper Mississippi River Basin as a case history. Process-based water temperature predictions in the Midwest US: 1 Spatial data (GIS polygons for 7,150 lakes) Ports of the United States Compilation of Geologic and Seismic Velocity Characteristics at Advanced National Seismic System Strong Motion Accelerometer Sites