Skip to main content
Advanced Search

Filters: Tags: LCC Science Catalog (X)

74 results (12ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Waves are the dominant influence on coastal morphology and ecosystem structure of tropical Pacific islands. Wave heights, periods, and directions for the 21st century were projected using near-surface wind fields from four atmosphere–ocean coupled global climate models (GCM) under representative concentration pathways (RCP) 4.5 and 8.5. GCM-derived wind fields forced the global WAVEWATCH-III wave model to generate hourly time series of bulk wave parameters around 25 islands in the mid to western tropical Pacific Ocean for historical (1976–2005), mid-century, and end-century time periods for the December–February and June–August seasons. The December–February regional wave climate is dominated by strong winds and...
Climate-change impacts on coral reefs are expected to include temperature-induced spatially extensive bleaching events1. Bleaching causes mortality when temperature stress persists but exposure to bleaching conditions is not expected to be spatially uniform at the regional or global scale2. Here we show the first maps of global projections of bleaching conditions based on ensembles of IPCC AR5 (ref. 3) models forced with the new Representative Concentration Pathways4 (RCPs). For the three RCPs with larger CO2 emissions (RCP 4.5, 6.0 and 8.5) the onset of annual bleaching conditions is associated with ∼ 510 ppm CO2 equivalent; the median year of all locations is 2040 for the fossil-fuel aggressive RCP 8.5. Spatial...
A tool which displays predicted future coral reef scenarious via Google Earth and KMZ files.
Anticipating potential shifts in plant communities has been a major challenge in climate change ecology. In Hawaiʻi, where conservation efforts tend to be habitat focused, the lack of projections of vegetation shifts under future climate is a major knowledge gap for developing management actions aimed at climate change mitigation and adaptation. • As a first approximation of such changes, we have modeled potential shifts of terrestrial vegetation across the Hawaiian landscape between now and the end of this century. Our approach relies on modeling the relation between current climate and the distribution of broad, climatically determined moisture zones (for example, dry, mesic, and wet areas) that form the basis...
Future Distribution of Cloud Forests and Associated Species in Hawaii Final report tables
BackgroundDetailed assessments of species responses to climate change are uncommon, owing to the limited nature of most ecological and local climate data sets. Exceptions, such as the case of the Haleakalā silversword, can provide important insights into the complexity of biological responses to changing climate conditions. We present a time series of decadal population censuses, combined with a pair of early population projections, which together span the past 80 years of demographic history for this alpine plant.ResultsThe time series suggests a strong population recovery from the 1930s through the 1980s, likely owing at least in part to management actions taken on its behalf. In contrast, the population is estimated...
Publication titled “Projection of changes in the frequency of heavy rain events over Hawaii based on leading Pacific climate modes”
Non-native species invasions, growing human populations, and climate change are central ecological concerns in tropical island communities. The combination of these threats have led to losses of native biota, altered hydrological and ecosystem processes, and reduced ecosystem services. These threats pose complex problems to often underfunded management entities. We developed a watershed decision support tool (WDST) for the windward coast of Hawai‘i Island aimed at prioritizing catchments for invasive species removal and native forest protection from non-native species invasions. Using the Ecosystem Management Decision Support (EMDS) system, we integrated spatial data from four sources: (i) native and invasive species...
Changes to patterns of wind and ocean currents are tightly linked to climate change and have important implications for cost of travel and energy budgets in marine vertebrates. We evaluated how El Niño-Southern Oscillation (ENSO)-driven wind patterns affected breeding Laysan and black-footed albatross across a decade of study. Owing to latitudinal variation in wind patterns, wind speed differed between habitat used during incubation and brooding; during La Niña conditions, wind speeds were lower in incubating Laysan (though not black-footed) albatross habitat, but higher in habitats used by brooding albatrosses. Incubating Laysan albatrosses benefited from increased wind speeds during El Niño conditions, showing...
We assessed tropical montane cloud forest (TMCF) sensitivity to natural disturbance by drought, fire, and dieback with a 7300-year-long paleorecord. We analyzed pollen assemblages, charcoal accumulation rates, and higher plant biomarker compounds (average chain length [ACL] of n-alkanes) in sediments from Wai’ānapanapa, a small lake near the upper forest limit and the mean trade wind inversion (TWI) in Hawai‘i. The paleorecord of ACL suggests increased drought frequency and a lower TWI elevation from 2555–1323 cal yr B.P. and 606–334 cal yr B.P. Charcoal began to accumulate and a novel fire regime was initiated ca. 880 cal yr B.P., followed by a decreased fire return interval at ca. 550 cal yr B.P. Diebacks occurred...
Temporal and Spatial Pattern of Sea-level Rise Impacts to Coastal Wetlands and Other Ecosystems GIS Products
The compressed Data Results for Integrating detailed assessments of climate threats on Pacific coral reefs and responses of traditional Hawaiian communities into management planning.
Coral reefs and the services they provide are seriously threatened by ocean acidification and climate change impacts like coral bleaching. Here, we present updated global projections for these key threats to coral reefs based on ensembles of IPCC AR5 climate models using the new Representative Concentration Pathway (RCP) experiments. For all tropical reef locations, we project absolute and percentage changes in aragonite saturation state (Ωarag) for the period between 2006 and the onset of annual severe bleaching (thermal stress >8 degree heating weeks); a point at which it is difficult to believe reefs can persist as we know them. Severe annual bleaching is projected to start 10–15 years later at high-latitude...