Skip to main content
Advanced Search

Filters: Tags: Landscapes (X) > Extensions: Raster (X)

18 results (24ms)   

Filters
Date Range
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Exposure (vulnerability) index for the future time period (2061-2080) representing projected climate conditions from the Meteorological Research Institute's Coupled Atmosphere-Ocean General Circulation Model, version 3, and the rcp85 emissions scenario. The exposure model uses LANDFIRE vegetation data and Worldclim climate data .The raster values represent exposure scores for the corresponding vegetation type. The modeled vegetation types can be spatially associated with the exposure values by overlaying them with the "landfire_veg_sw_300m.tif" raster.Exposure values represent where the location falls in climate space relative to its recent historical distribution:5 (core 5% of historical climate space); 10 (5 -...
Exposure (vulnerability) index for the future time period (2041-2060) representing projected climate conditions from the Model for Interdisciplinary Research on Climate, Earth System Model, Chemistry Coupled (MIROC-ESM-CHEM) and the rcp85 emissions scenario. The exposure model uses LANDFIRE vegetation data and Worldclim climate data .The raster values represent exposure scores for the corresponding vegetation type. The modeled vegetation types can be spatially associated with the exposure values by overlaying them with the "landfire_veg_sw_300m.tif" raster.Exposure values represent where the location falls in climate space relative to its recent historical distribution:5 (core 5% of historical climate space); 10...
Exposure (vulnerability) index for the future time period (2061-2080) representing projected climate conditions from the MRI-CGCM3 GCM and the rcp45 emissions scenario. The exposure model uses LANDFIRE vegetation data and Worldclim climate data .The raster values represent exposure scores for the corresponding vegetation type. The modeled vegetation types can be spatially associated with the exposure values by overlaying them with the "landfire_veg_sw_300m.tif" raster.Exposure values represent where the location falls in climate space relative to its recent historical distribution:5 (core 5% of historical climate space); 10 (5 - 10%; still very good); ... ; 95 (90 - 95%; within the historical distribution, but getting...
thumbnail
Fragmentation extent of six ecosystem types after European Settlement was analyzed using LANDFIRE data. The ecosystem types includes: Grassland, Shrubland, Conifer, Riparian, Hardwood and Sparse ecosystems. The land use change and fragmentation extents have been analyzed by delineating nine Greater Wildland Ecosystems (GWEs) across NCCSC.
Exposure (vulnerability) index for the future time period (2041-2060) representing projected climate conditions from the Meterological Research Institute's Coupled Atmosphere-Ocean General Circulation Model (MRI-CGCM3) and the rcp45 emissions scenario. The exposure model uses LANDFIRE vegetation data and Worldclim climate data .The raster values represent exposure scores for the corresponding vegetation type. The modeled vegetation types can be spatially associated with the exposure values by overlaying them with the "landfire_veg_sw_300m.tif" raster.Exposure values represent where the location falls in climate space relative to its recent historical distribution:5 (core 5% of historical climate space); 10 (5 -...
thumbnail
Fragmentation extent of six ecosystem types after European Settlement was analyzed using LANDFIRE data. The ecosystem types includes: Grassland, Shrubland, Conifer, Riparian, Hardwood and Sparse ecosystems. The land use change and fragmentation extents have been analyzed by delineating nine Greater Wildland Ecosystems (GWEs) across NCCSC.
thumbnail
Fragmentation extent of six ecosystem types after European Settlement was analyzed using LANDFIRE data. The ecosystem types includes: Grassland, Shrubland, Conifer, Riparian, Hardwood and Sparse ecosystems. The land use change and fragmentation extents have been analyzed by delineating nine Greater Wildland Ecosystems (GWEs) across NCCSC.
thumbnail
Fragmentation extent of six ecosystem types after European Settlement was analyzed using LANDFIRE data. The ecosystem types includes: Grassland, Shrubland, Conifer, Riparian, Hardwood and Sparse ecosystems. The land use change and fragmentation extents have been analyzed by delineating nine Greater Wildland Ecosystems (GWEs) across NCCSC.
Exposure (vulnerability) index for the baseline time period (1950-2000) representing historical conditions. The exposure model uses LANDFIRE vegetation data and Worldclim climate data . This raster represents the baseline exposure values from the Worldclim "Current" time period (1950-2000). There were four climate scenarios evaluated under the Southwest Climate Change Vulnerability project (MG - RCP 45; MG - RCP 85; MI - RCP 45; MI - RCP 85). Because the model is fit on the four scenarios independently, there are minor differences in the baseline exposure values. This raster simplifies the outputs by combining the four baseline exposure rasters, and can be used with any of the projected futures.The raster values...
Exposure (vulnerability) index for the future time period (2041-2060) representing projected climate conditions from the Meteorological Research Institute's Coupled Atmosphere-Ocean General Circulation Model, version 3, and the rcp85 emissions scenario. The exposure model uses LANDFIRE vegetation data and Worldclim climate data .The raster values represent exposure scores for the corresponding vegetation type. The modeled vegetation types can be spatially associated with the exposure values by overlaying them with the "landfire_veg_sw_300m.tif" raster.Exposure values represent where the location falls in climate space relative to its recent historical distribution:5 (core 5% of historical climate space); 10 (5 -...
thumbnail
Fragmentation extent of six ecosystem types after European Settlement was analyzed using LANDFIRE data. The ecosystem types includes: Grassland, Shrubland, Conifer, Riparian, Hardwood and Sparse ecosystems. The land use change and fragmentation extents have been analyzed by delineating nine Greater Wildland Ecosystems (GWEs) across NCCSC.
Exposure (vulnerability) index for the future time period (2061-2080) representing projected climate conditions from the Model for Interdisciplinary Research on Climate, Earth System Model, Chemistry Coupled (MIROC-ESM-CHEM) and the rcp85 emissions scenario. The exposure model uses LANDFIRE vegetation data and Worldclim climate data .The raster values represent exposure scores for the corresponding vegetation type. The modeled vegetation types can be spatially associated with the exposure values by overlaying them with the "landfire_veg_sw_300m.tif" raster.Exposure values represent where the location falls in climate space relative to its recent historical distribution:5 (core 5% of historical climate space); 10...
thumbnail
Fragmentation extent of six ecosystem types after European Settlement was analyzed using LANDFIRE data. The ecosystem types includes: Grassland, Shrubland, Conifer, Riparian, Hardwood and Sparse ecosystems. The land use change and fragmentation extents have been analyzed by delineating nine Greater Wildland Ecosystems (GWEs) across NCCSC.
thumbnail
Fragmentation extent of six ecosystem types after European Settlement was analyzed using LANDFIRE data. The ecosystem types includes: Grassland, Shrubland, Conifer, Riparian, Hardwood and Sparse ecosystems. The land use change and fragmentation extents have been analyzed by delineating nine Greater Wildland Ecosystems (GWEs) across NCCSC.
Exposure (vulnerability) index for the future time period (2041-2060) representing projected climate conditions from the Model for Interdisciplinary Research on Climate, Earth System Model, Chemistry Coupled (MIROC-ESM-CHEM) and the rcp45 emissions scenario. The exposure model uses LANDFIRE vegetation data and Worldclim climate data .The raster values represent exposure scores for the corresponding vegetation type. The modeled vegetation types can be spatially associated with the exposure values by overlaying them with the "landfire_veg_sw_300m.tif" raster.Exposure values represent where the location falls in climate space relative to its recent historical distribution:5 (core 5% of historical climate space); 10...
thumbnail
Fragmentation extent of six ecosystem types after European Settlement was analyzed using LANDFIRE data. The ecosystem types includes: Grassland, Shrubland, Conifer, Riparian, Hardwood and Sparse ecosystems. The land use change and fragmentation extents have been analyzed by delineating nine Greater Wildland Ecosystems (GWEs) across NCCSC.
thumbnail
Fragmentation extent of six ecosystem types after European Settlement was analyzed using LANDFIRE data. The ecosystem types includes: Grassland, Shrubland, Conifer, Riparian, Hardwood and Sparse ecosystems. The land use change and fragmentation extents have been analyzed by delineating nine Greater Wildland Ecosystems (GWEs) across NCCSC.
Exposure (vulnerability) index for the future time period (2061-2080) representing projected climate conditions from the Model for Interdisciplinary Research on Climate, Earth System Model, Chemistry Coupled (MIROC-ESM-CHEM) and the rcp45 emissions scenario. The exposure model uses LANDFIRE vegetation data and Worldclim climate data .The raster values represent exposure scores for the corresponding vegetation type. The modeled vegetation types can be spatially associated with the exposure values by overlaying them with the "landfire_veg_sw_300m.tif" raster.Exposure values represent where the location falls in climate space relative to its recent historical distribution:5 (core 5% of historical climate space); 10...


    map background search result map search result map Land use change and fragmentation of Badland Greater Wildland Ecosystems (GWE) using LANDFIRE data Land use change and fragmentation of Bighorn Greater Wildland Ecosystems (GWE) using LANDFIRE data Land use change and fragmentation of Fort Peck Greater Wildland Ecosystems (GWE) using LANDFIRE data Land use change and fragmentation of Grand River Greater Wildland Ecosystems (GWE) using LANDFIRE data Land use change and fragmentation of Great Sand Dunes Greater Wildland Ecosystems (GWE) using LANDFIRE data Land use change and fragmentation of Rocky Mountain Greater Wildland Ecosystems (GWE) using LANDFIRE data Land use change and fragmentation of Theodore Roosevelt Greater Wildland Ecosystems (GWE) using LANDFIRE data Land use change and fragmentation of Yellowstone Greater Wildland Ecosystems (GWE) using LANDFIRE data Land use change and fragmentation of Lake Traverse Greater Wildland Ecosystems (GWE) using LANDFIRE data Land use change and fragmentation of Rocky Mountain Greater Wildland Ecosystems (GWE) using LANDFIRE data Land use change and fragmentation of Lake Traverse Greater Wildland Ecosystems (GWE) using LANDFIRE data Land use change and fragmentation of Great Sand Dunes Greater Wildland Ecosystems (GWE) using LANDFIRE data Land use change and fragmentation of Theodore Roosevelt Greater Wildland Ecosystems (GWE) using LANDFIRE data Land use change and fragmentation of Grand River Greater Wildland Ecosystems (GWE) using LANDFIRE data Land use change and fragmentation of Fort Peck Greater Wildland Ecosystems (GWE) using LANDFIRE data Land use change and fragmentation of Badland Greater Wildland Ecosystems (GWE) using LANDFIRE data Land use change and fragmentation of Bighorn Greater Wildland Ecosystems (GWE) using LANDFIRE data Land use change and fragmentation of Yellowstone Greater Wildland Ecosystems (GWE) using LANDFIRE data