Skip to main content
Advanced Search

Filters: Tags: Marine Geology (X) > Types: Map Service (X) > Extensions: Raster (X)

42 results (14ms)   

View Results as: JSON ATOM CSV
thumbnail
This part of DS 781 presents data for the sediment-thickness map of the Pigeon Point to Monterey, California, map region. The raster data file is included in "SedimentThickness_PigeonPointToMontereyBay.zip," which is accessible from https://doi.org/10.5066/F7N29V0Z. As part of the USGS's California State Waters Mapping Project, a 50-m-resolution grid of sediment thickness for the seafloor within the limit of California’s State Waters between Pigeon Point and southern Monterey Bay was generated from seismic-reflection data collected in 2009, 2010, and 2011 (USGS activities (S-15-10-NC, S-N1-09-MB, and S-06-11-MB) supplemented with outcrop and geologic structure from DS 781. Isopach contours at 2.5-meter intervals...
thumbnail
This digital elevation model provides a tool for calibrating tsunami risk to observations of the 1945 Makran tsunami in Karachi Harbour. The DEM bathymetry is derived from soundings made mainly during the first eight years after the tsunami. Although deficient in portraying intertidal backwaters and upland topography, the DEM accurately depicts the sheltered setting of one of the two tide gauges that recorded the 1945 tsunami.
thumbnail
In June 2022, the U.S. Geological Survey, in collaboration with the Massachusetts Office of Coastal Zone Management, collected high-resolution geophysical data, in Nantucket Sound to understand the regional geology in the vicinity of Horseshoe Shoal. This effort is part of a long-term collaboration between the USGS and the Commonwealth of Massachusetts to map the State’s waters, support research on the Quaternary evolution of coastal Massachusetts, resolve the influence of sea-level change and sediment supply on coastal evolution, and strengthen efforts to understand the type, distribution, and quality of subtidal marine habitats. This collaboration produces high-resolution geologic data that serve the needs of...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, Raster; Tags: Atlantic Ocean, CMHRP, CZM, Coastal and Marine Hazards and Resources Program, DOI, All tags...
thumbnail
Summary This data release contains postprocessed model output from a simulation of hypothetical rapid motion of landslides, subsequent wave generation, and wave propagation. A simulated displacement wave was generated by rapid motion of unstable material into Barry Arm fjord. We consider the wave propagation in Harriman Fjord and Barry Arm, western Prince William Sound (area of interest and place names depicted in Figure 1). We consider only the largest wave-generating scenario presented by Barnhart and others (2021a, 2021b). As in Barnhart and others (2021c), we used a simulation setup similar to Barnhart and others (2021a, 2021b), but our results differ because we used different topography and bathymetry datasets....
thumbnail
Geologic structure and isopach maps were constructed by interpreting over 19,890 trackline kilometers of co-located multichannel boomer, sparker and chirp seismic reflection profiles from the continental shelf of the Delmarva Peninsula, including Maryland and Virginia state waters. In this region, Brothers and others (2020) interpret 12 seismic units and 11 regional unconformities. They interpret the infilled channels as Late Tertiary and Quaternary courses of the Susquehanna, Potomac, Rappahannock, York and James Rivers and tributaries, in addition to a broad drainage system. These regional unconformities form a composite unconformity interpreted as the Quaternary-Tertiary (Q-T) unconformity. A depth to Tertiary...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, Raster; Tags: 32-bit GeoTIFF, Applied Acoustics S-Boom Source, Assateague Island, Assateague Island National Seashore, Atlantic Ocean, All tags...
thumbnail
Coastal resources are increasingly impacted by erosion, extreme weather events, sea-level rise, tidal flooding, and other potential hazards related to climate change. These hazards have varying impacts on coastal landscapes due to the numerous geologic, oceanographic, ecological, and socioeconomic factors that exist at a given location. Here, an assessment framework is introduced that synthesizes existing datasets describing the variability of the landscape and hazards that may act on it to evaluate the likelihood of coastal change along the U.S coastline within the coming decade. The pilot study, conducted in the Northeastern U.S. (Maine to Virginia), is comprised of datasets derived from a variety of federal,...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, Raster; Tags: Acadia National Park, ArcGIS Pro, Arcpy, Autoclassification, Automation, All tags...
thumbnail
Coastal resources are increasingly impacted by erosion, extreme weather events, sea-level rise, tidal flooding, and other potential hazards related to climate change. These hazards have varying impacts on coastal landscapes due to the numerous geologic, oceanographic, ecological, and socioeconomic factors that exist at a given location. Here, an assessment framework is introduced that synthesizes existing datasets describing the variability of the landscape and hazards that may act on it to evaluate the likelihood of coastal change along the U.S coastline within the coming decade. The pilot study, conducted in the Northeastern U.S. (Maine to Virginia), is comprised of datasets derived from a variety of federal,...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, Raster; Tags: Acadia National Park, ArcGIS Pro, Arcpy, Autoclassification, Automation, All tags...
thumbnail
In spring and summer 2017, the U.S. Geological Survey’s Gas Hydrates Project conducted two cruises aboard the research vessel Hugh R. Sharp to explore the geology, chemistry, ecology, physics, and oceanography of sea-floor methane seeps and water column gas plumes on the northern U.S. Atlantic margin between the Baltimore and Keller Canyons. Split-beam and multibeam echo sounders and a chirp subbottom profiler were deployed during the cruises to map water column backscatter, sea-floor bathymetry and backscatter, and subsurface stratigraphy associated with known and undiscovered sea-floor methane seeps. The first cruise, known as the Interagency Mission for Methane Research on Seafloor Seeps and designated as field...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, Raster; Tags: 7160, Accomac Canyon, Atlantic Margin, Atlantic Ocean, CMHRP, All tags...
thumbnail
This data release contains model output from simulations presented in the associated Open-File Report (Barnhart and others, 2021). In this report, we present model results from four simulations (scenarios C-290, NC-290, C-689, NC-689, Table 1) of hypothetical rapid movement of landslides into adjacent fjord water at Barry Arm, Alaska using the D-Claw model (George and Iverson, 2014; Iverson and George, 2014). The basis for the four scenarios is described in Barnhart and others (2021). Table 1. Summary of four considered scenarios including key simulation input parameter values. Simulation input parameters Scenario name and description NC-290 C-290 NC-689 C-689 Symbol Units Description Smaller,...
thumbnail
Coastal resources are increasingly impacted by erosion, extreme weather events, sea-level rise, tidal flooding, and other potential hazards related to climate change. These hazards have varying impacts on coastal landscapes due to the numerous geologic, oceanographic, ecological, and socioeconomic factors that exist at a given location. Here, an assessment framework is introduced that synthesizes existing datasets describing the variability of the landscape and hazards that may act on it to evaluate the likelihood of coastal change along the U.S coastline within the coming decade. The pilot study, conducted in the Northeastern U.S. (Maine to Virginia), is comprised of datasets derived from a variety of federal,...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, Raster; Tags: Acadia National Park, ArcGIS Pro, Arcpy, Autoclassification, Automation, All tags...
thumbnail
High resolution bathymetric, sea-floor backscatter, and seismic-reflection data were collected offshore of southeastern Louisiana aboard the research vessel Point Sur on May 19-26, 2017, in an effort to characterize mudflow hazards on the Mississippi River Delta front. As the initial field program of a research cooperative between the U.S. Geological Survey, the Bureau of Ocean Energy Management, and other Federal and academic partners, the primary objective of this cruise was to assess the suitability of sea-floor mapping and shallow subsurface imaging tools in the challenging environmental conditions found across delta fronts (for example, variably distributed water column stratification and widespread biogenic...
thumbnail
The natural resiliency of the New Jersey barrier island system, and the efficacy of management efforts to reduce vulnerability, depends on the ability of the system to recover and maintain equilibrium in response to storms and persistent coastal change. This resiliency is largely dependent on the availability of sand in the beach system. In an effort to better understand the system's sand budget and processes in which this system evolves, high-resolution geophysical mapping of the sea floor in Little Egg Inlet and along the southern end of Long Beach Island near Beach Haven, New Jersey was conducted from May 31 to June 10, 2018, followed by a sea floor sampling survey conducted from October 22 to 23, 2018, as part...
thumbnail
This part of DS 781 presents data for the sediment-thickness map of the Punta Gorda to Point Arena, California, region. The raster data file is included in the "SedimentThickness_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Sur and Point Arguello was generated from seismic-reflection data collected between 2010 and 2012, and supplemented with geologic structure (fault) information following the methodology of Wong (2012). Reference Cited: Wong, F. L., Phillips, E.L., Johnson, S.Y., and Sliter, R.W., 2012, Modeling...
thumbnail
High resolution bathymetric, sea-floor backscatter, and seismic-reflection data were collected offshore of southeastern Louisiana aboard the research vessel Point Sur on May 19-26, 2017, in an effort to characterize mudflow hazards on the Mississippi River Delta front. As the initial field program of a research cooperative between the U.S. Geological Survey, the Bureau of Ocean Energy Management, and other Federal and academic partners, the primary objective of this cruise was to assess the suitability of sea-floor mapping and shallow subsurface imaging tools in the challenging environmental conditions found across delta fronts (for example, variably distributed water column stratification and widespread biogenic...
The U.S. Geological Survey, Woods Hole Coastal and Marine Science Center in cooperation with the University of Maine mapped approximately 50 square kilometers of the seafloor within Belfast Bay, Maine. Three geophysical surveys conducted in 2006, 2008 and 2009 collected swath bathymetric (2006 and 2008) and chirp seismic reflection profile data (2006 and 2009). The project characterized the spatial, morphological and subsurface variability of the Belfast Bay, Maine pockmark field. Pockmarks are large seafloor depressions that are associated with seabed fluid escape.
thumbnail
Summary This data release contains postprocessed model output from simulations of hypothetical rapid motion of landslides, subsequent wave generation, and wave propagation. A modeled tsunami wave was generated by rapid motion of unstable material into Barry Arm Fjord. This wave propagated through Prince William Sound and then into Passage Canal east of Whittier. Here we consider only the largest wave-generating scenario presented by Barnhart and others (2021a, 2021b) and use a simulation setup similar to that work. The results presented here are not identical to those presented in Barnhart and others (2021a, 2021b) because the results in this data release were obtained using an expanded dataset of topography and...
thumbnail
This Data Release contains data from the U.S. Geological Survey (USGS) survey of the Oregon outer Continental shelf (OCS) Floating Wind Farm Site in 2014.The backscatter intensity data was collected along with bathymetry data by USGS during the period from August 20 to September 1, 2014, using a Reson 7111 multibeam echosounder. The mapping mission collected bathymetry data from about 163 m to 566 m depths on the Oregon outer continental shelf. The acquisition was funded by the U.S. Bureau of Ocean Energy Management.Within the final imagery, brighter tones indicate higher backscatter intensity, and darker tones indicate lower backscatter intensity. The intensity represents a complex interaction between the acoustic...
thumbnail
Geologic, sediment texture, and physiographic zone maps characterize the sea floor south and west of Martha's Vineyard and north of Nantucket, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a result of a collaborative effort between the U.S. Geological Survey and the Massachusetts Office of Coastal Zone Management to characterize the surface and subsurface geologic framework offshore of...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, Raster; Tags: 32-bit GeoTIFF, 512i, Aquinnah, Atlantic Ocean, CMGP, All tags...
thumbnail
The natural resiliency of the New Jersey barrier island system, and the efficacy of management efforts to reduce vulnerability, depends on the ability of the system to recover and maintain equilibrium in response to storms and persistent coastal change. This resiliency is largely dependent on the availability of sand in the beach system. In an effort to better understand the system's sand budget and processes in which this system evolves, high-resolution geophysical mapping of the sea floor in Little Egg Inlet and along the southern end of Long Beach Island near Beach Haven, New Jersey was conducted from May 31 to June 10, 2018, followed by a sea floor sampling survey conducted from October 22 to 23, 2018, as part...
thumbnail
This work integrated multiple topographic and bathymetric data sources to generate a merged topobathymetric map of western Prince William Sound. We converted all data sources to NAD 83 UTM Zone 6 N and mean higher high water (MHHW) before compiling. In Barry Arm, north of Port Wells, we used a digital terrain model (DTM) derived from subaerial light detection and ranging (lidar) data collected on June 26, 2020, (Daanen and others, 2021) and submarine multibeam sonar bathymetric data collected between August 12 and 23, 2020 (NOAA, 2020). In College Fiord, adjacent to Barry Arm to the east, we used multibeam sonar bathymetric data collected between March 25 and August 26, 2021 (NOAA, 2021). These data were combined...


map background search result map search result map Oregon OCS backscatter Sediment Thickness--Pigeon Point to Monterey, California Multibeam Echosounder, Reson T-20P deep site backscatter (4-m), USGS field activity 2017-003-FA, Mississippi River Delta front offshore of southeastern Louisiana (8-bit GeoTIFF, UTM Zone 16N, NAD 83) Multibeam Echosounder, Reson T-20P bathymetry overview (10-m), USGS field activity 2017-003-FA, Mississippi River Delta front offshore of southeastern Louisiana (32-bit GeoTIFF, UTM Zone 16N, NAD 83, NAVD 88 Vertical Datum) Bathymetric and topographic grid intended for simulations of the 1945 Makran tsunami in Karachi Harbour Elevation of the late Wisconsinan to early Holocene regressive unconformity (Ur) offshore of western and southern Martha's Vineyard and north of Nantucket, Massachusetts Sediment Thickness--Punta Gorda to Point Arena, California Multibeam echo sounder - GeoTIFF grids for processed Reson 7160 seafloor bathymetry data collected during USGS field activities 2017-001-FA and 2017-002-FA Bathymetric data collected in the Belfast Bay, Maine pockmark field using a SWATHplus-M interferometric sonar in 2006 and 2008, by the U.S. Geological Survey (32-bit floating point raster, UTM 19 WGS 84, MLLW) Multibeam backscatter data collected in Little Egg Inlet and offshore the southern end of Long Beach Island, NJ, during USGS Field Activity 2018-001-FA, using a dual-head Reson T20-P multibeam echosounder (8-bit GeoTIFF, UTM Zone 18N, WGS 84, 2 meter resolution) Select model results from simulations of hypothetical rapid failures of landslides into Barry Arm, Prince William Sound, Alaska Simulated inundation extent and depth at Whittier, Alaska resulting from the hypothetical rapid motion of landslides into Barry Arm Fjord, Prince William Sound, Alaska Coastal Change Likelihood in the U.S. Northeast Region: Maine to Virginia - Event Hazards Coastal Change Likelihood in the U.S. Northeast Region: Maine to Virginia - Maximum Change Likelihood Coastal Change Likelihood in the U.S. Northeast Region: Maine to Virginia - Hazard Impact Type Simulated inundation extent and depth in Harriman Fjord and Barry Arm, western Prince William Sound, Alaska, resulting from the hypothetical rapid motion of landslides into Barry Arm Fjord, Prince William Sound, Alaska Multibeam backscatter data collected in Nantucket Sound Massachusetts in the vicinity of Horseshoe Shoal, during USGS Field Activity 2022-001-FA using a Teledyne SeaBat Integrated Dual-Head (IDH) T20-P multibeam echosounder (8-bit GeoTIFF, UTM Zone 19N, WGS 84, 1-m resolution) Depth to Quaternary regional unconformities offshore of the Delmarva Peninsula, including Maryland and Virginia state waters Merged topography and bathymetry, western Prince William Sound Simulated inundation extent and depth at Whittier, Alaska resulting from the hypothetical rapid motion of landslides into Barry Arm Fjord, Prince William Sound, Alaska Bathymetric and topographic grid intended for simulations of the 1945 Makran tsunami in Karachi Harbour Multibeam Echosounder, Reson T-20P deep site backscatter (4-m), USGS field activity 2017-003-FA, Mississippi River Delta front offshore of southeastern Louisiana (8-bit GeoTIFF, UTM Zone 16N, NAD 83) Bathymetric data collected in the Belfast Bay, Maine pockmark field using a SWATHplus-M interferometric sonar in 2006 and 2008, by the U.S. Geological Survey (32-bit floating point raster, UTM 19 WGS 84, MLLW) Multibeam backscatter data collected in Nantucket Sound Massachusetts in the vicinity of Horseshoe Shoal, during USGS Field Activity 2022-001-FA using a Teledyne SeaBat Integrated Dual-Head (IDH) T20-P multibeam echosounder (8-bit GeoTIFF, UTM Zone 19N, WGS 84, 1-m resolution) Multibeam backscatter data collected in Little Egg Inlet and offshore the southern end of Long Beach Island, NJ, during USGS Field Activity 2018-001-FA, using a dual-head Reson T20-P multibeam echosounder (8-bit GeoTIFF, UTM Zone 18N, WGS 84, 2 meter resolution) Multibeam Echosounder, Reson T-20P bathymetry overview (10-m), USGS field activity 2017-003-FA, Mississippi River Delta front offshore of southeastern Louisiana (32-bit GeoTIFF, UTM Zone 16N, NAD 83, NAVD 88 Vertical Datum) Sediment Thickness--Pigeon Point to Monterey, California Sediment Thickness--Punta Gorda to Point Arena, California Merged topography and bathymetry, western Prince William Sound Multibeam echo sounder - GeoTIFF grids for processed Reson 7160 seafloor bathymetry data collected during USGS field activities 2017-001-FA and 2017-002-FA Depth to Quaternary regional unconformities offshore of the Delmarva Peninsula, including Maryland and Virginia state waters Select model results from simulations of hypothetical rapid failures of landslides into Barry Arm, Prince William Sound, Alaska Coastal Change Likelihood in the U.S. Northeast Region: Maine to Virginia - Maximum Change Likelihood Coastal Change Likelihood in the U.S. Northeast Region: Maine to Virginia - Hazard Impact Type Coastal Change Likelihood in the U.S. Northeast Region: Maine to Virginia - Event Hazards