Skip to main content
Advanced Search

Filters: Tags: National Assessment of Shoreline Change Project (X)

151 results (216ms)   

View Results as: JSON ATOM CSV
thumbnail
This dataset consists of long-term (~63 years) shoreline change rates for the north coast of Alaska between the U.S. Canadian Border and the Hulahula River. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.3, an ArcGIS extension developed by the U.S. Geological Survey. Long-term rates of shoreline change were calculated using a linear regression rate-of-change method based on available shoreline data between 1947 and 2010. A reference baseline was used as the originating point for the orthogonal transects cast by the DSAS software. The transects intersect each shoreline establishing measurement points, which are then used to calculate long-term rates.
thumbnail
This dataset includes a reference baseline used by the Digital Shoreline Analysis System (DSAS) to calculate rate-of-change statistics for the sheltered north coast of Alaska coastal region between the Hulahula River and the Colville River for the time period 1947 to 2010. This baseline layer serves as the starting point for all transects cast by the DSAS application and can be used to establish measurement points used to calculate shoreline-change rates.
thumbnail
This dataset includes a reference baseline used by the Digital Shoreline Analysis System (DSAS) to calculate rate-of-change statistics for the sheltered north coast of Alaska coastal region between the U.S. Canadian Border to the Hulahula River for the time period 1947 to 2010. This baseline layer serves as the starting point for all transects cast by the DSAS application and can be used to establish measurement points used to calculate shoreline-change rates.
thumbnail
Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project.There is no widely accepted standard for analyzing shoreline...
thumbnail
Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project.There is no widely accepted standard for analyzing shoreline...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project (http://coastal.er.usgs.gov/shoreline-change/), documents changes in shoreline position as a proxy for coastal...
Categories: Data; Types: Citation, Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Atlantic Coast, Bodie Island, Buxton, CERC, CERC map, All tags...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project, documents changes in shoreline position as a proxy for coastal change. Shoreline position is an easily understood...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project, documents changes in shoreline position as a proxy for coastal change. Shoreline position is an easily understood...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project, documents changes in shoreline position as a proxy for coastal change. Shoreline position is an easily understood...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project, documents changes in shoreline position as a proxy for coastal change. Shoreline position is an easily understood...
Categories: Data; Types: Citation, Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Accretion, Aransas Pass, Bermuda Beach, Bolivar Peninsula, Bryan Beach, All tags...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project (http://coastal.er.usgs.gov/shoreline-change/), documents changes in shoreline position as a proxy for coastal...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project (http://coastal.er.usgs.gov/shoreline-change/), documents changes in shoreline position as a proxy for coastal...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project (http://coastal.er.usgs.gov/shoreline-change/), documents changes in shoreline position as a proxy for coastal...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project (http://coastal.er.usgs.gov/shoreline-change/), documents changes in shoreline position as a proxy for coastal...
Types: Citation; Tags: Atlantic Coast, Bull Island, CMGP, CSC, Cape Romain, All tags...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates at 40-meter intervals along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic lidar datasets obtained from NOAA's Ocean Service, Coastal Services Center. This 2018 update includes two new mean high water (MHW) shorelines for the Massachusetts...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates at 40-meter intervals along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic lidar datasets obtained from NOAA's Ocean Service, Coastal Services Center. This 2018 update includes two new mean high water (MHW) shorelines for the Massachusetts...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates at 40-meter intervals along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic lidar datasets obtained from NOAA's Ocean Service, Coastal Services Center. This 2018 update includes two new mean high water (MHW) shorelines for the Massachusetts...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates at 40-meter intervals along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic lidar datasets obtained from NOAA's Ocean Service, Coastal Services Center. This 2018 update includes two new mean high water (MHW) shorelines for the Massachusetts...
thumbnail
This dataset includes shorelines from 63 years ranging from 1947 to 2010 for the north coast of Alaska between the Hulahula River and the Colville River. Shorelines were compiled from topographic survey sheets (T-sheets; National Oceanic and Atmospheric Administration (NOAA)), aerial orthophotographs (U.S. Geological Survey (USGS), National Aeronautics and Space Administration (NASA), Conoco-Philips (CP), British Petroleum Alaska (BPXA)), satellite imagery (State of Alaska), and lidar elevation data (USGS). Historical shoreline positions serve as easily understood features that can be used to describe the movement of beaches through time. These data are used to calculate rates of shoreline change for the U.S. Geological...
thumbnail
This dataset consists of long-term (~65 years) shoreline change rates for the north coast of Alaska between the Colville River and Point Barrow. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.3, an ArcGIS extension developed by the U.S. Geological Survey. Long-term rates of shoreline change were calculated using a linear regression rate-of-change method based on available shoreline data between 1947 and 2012. A reference baseline was used as the originating point for the orthogonal transects cast by the DSAS software. The transects intersect each shoreline establishing measurement points, which are then used to calculate long-term rates.


map background search result map search result map OR Long Term Shoreline Change WA Long Term Shoreline Change Offshore baseline for the Alabama coastal region generated to calculate shoreline change rates Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for Florida north (FLnorth) Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for Florida north (FLnorth) Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for Texas east (TXeast) Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for South Carolina (SC) Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for northeastern Florida (FLne) Offshore baseline for the southeastern Florida (FLse) coastal region generated to calculate shoreline change rates Shorelines of the northern North Carolina (NCnorth) coastal region used in shoreline change analysis Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for southern North Carolina (NCsouth) Offshore baseline for the sheltered Central Beaufort Sea, Alaska coastal region (Hulahula River to the Colville River) generated to calculate shoreline change rates Offshore baseline for the sheltered East Beaufort Sea, Alaska coastal region (U.S. Canadian Border to the Hulahula River) generated to calculate shoreline change rates Shorelines of the Central Beaufort Sea, Alaska coastal region (Hulahula River to the Colville River) used in shoreline change analysis Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Long-Term Linear Regression Rate Calculations for the Exposed East Beaufort Sea coast of Alaska between the U.S. Canadian Border and the Hulahula River Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Long-Term Linear Regression Rate Calculations for the Exposed West Beaufort Sea coast of Alaska between the Colville River and Point Barrow 2012 profile-derived mean high water shorelines of Nantucket, MA used in shoreline change analysis 2013 profile-derived mean high water shorelines of Nantucket, MA used in shoreline change analysis 2010 profile-derived mean high water shorelines of the North Shore of MA used in shoreline change analysis 2014 profile-derived mean high water shorelines of the south shore of Cape Cod, MA used in shoreline change analysis 2013 profile-derived mean high water shorelines of Nantucket, MA used in shoreline change analysis 2012 profile-derived mean high water shorelines of Nantucket, MA used in shoreline change analysis 2010 profile-derived mean high water shorelines of the North Shore of MA used in shoreline change analysis Shorelines of the northern North Carolina (NCnorth) coastal region used in shoreline change analysis Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for southern North Carolina (NCsouth) Offshore baseline for the sheltered East Beaufort Sea, Alaska coastal region (U.S. Canadian Border to the Hulahula River) generated to calculate shoreline change rates WA Long Term Shoreline Change Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Long-Term Linear Regression Rate Calculations for the Exposed East Beaufort Sea coast of Alaska between the U.S. Canadian Border and the Hulahula River Offshore baseline for the southeastern Florida (FLse) coastal region generated to calculate shoreline change rates Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for northeastern Florida (FLne) Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for Florida north (FLnorth) Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for Florida north (FLnorth) OR Long Term Shoreline Change Offshore baseline for the sheltered Central Beaufort Sea, Alaska coastal region (Hulahula River to the Colville River) generated to calculate shoreline change rates Shorelines of the Central Beaufort Sea, Alaska coastal region (Hulahula River to the Colville River) used in shoreline change analysis Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for South Carolina (SC) Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Long-Term Linear Regression Rate Calculations for the Exposed West Beaufort Sea coast of Alaska between the Colville River and Point Barrow Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for Texas east (TXeast)