Skip to main content
Advanced Search

Filters: Tags: Nitrogen cycling (X) > Categories: Project (X)

4 results (26ms)   

View Results as: JSON ATOM CSV
Evaluate the hydrologic and geochemical processes that control nitrate fluxes in agricultural settings. Important questions remain about the overall regional and global importance of groundwater nitrogen fluxes, denitrification (microbial reduction of NO 3 − to N 2), and the sources of electron donors contributing to this microbial reaction. Studies are needed that apply robust methods for measuring nitrogen fluxes and denitrification among multiple sites to evaluate important factors affecting N fluxes. These results, in combination with novel methods for efficient estimation of fluxes in groundwater, facilitate estimates of N fluxes in across large regions such as the Corn Belt. Quantify the effects of complex...
Humic substances are the predominant form of natural organic matter (NOM) in soil and water and comprise the major pools of biologically refractory organic carbon and nitrogen in the biosphere. Humic substances play a role in almost all geochemical processes affecting soil and water. Knowledge of the formation and mineralization pathways of soil and aquatic humic substances is therefore critical to an understanding of the biogeochemical cycles of carbon and nitrogen, and climate change. Humic substances act as electron donor-acceptor systems and thus participate in oxidation –reduction processes with transition metal ions and biological systems in soil and water environments. Chlorination and chloramination of...
To study the mechanisms, pathways, and rates of transformation of carbon and nitrogen compounds (natural and contaminant) mediated by microorganisms in aquatic habitats and identify factors controlling these transformations and to examine the effect that these transformations have upon other biogeochemical processes.
The overall objective of this project is to determine the nature of natural organic carbon and organic nitrogen during its biogeochemical cycling through the environment and its interactions with anthropogenic compounds. Emerging techniques in liquid chromatography/mass spectrometry, liquid chromatography/tandem mass spectrometry, infrared spectroscopy and other means will be used to gain new insights into dominant processes responsible for fate, transport, and reactivity. Field- and laboratory-based experiments will enable direct application to current environmental problems such as disinfection byproduct formation potential, long-term effects of forest fires, and sustainability of agricultural soils. The chemical,...